找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computing and Data Science; Third International Weijia Cao,Aydogan Ozcan,Bei Guan Conference proceedings 2021 Springer Nature Singapore Pt

[復(fù)制鏈接]
查看: 26655|回復(fù): 58
樓主
發(fā)表于 2025-3-21 19:00:34 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Computing and Data Science
副標(biāo)題Third International
編輯Weijia Cao,Aydogan Ozcan,Bei Guan
視頻videohttp://file.papertrans.cn/235/234790/234790.mp4
叢書名稱Communications in Computer and Information Science
圖書封面Titlebook: Computing and Data Science; Third International  Weijia Cao,Aydogan Ozcan,Bei Guan Conference proceedings 2021 Springer Nature Singapore Pt
描述This volume constitutes selected papers presented at the?Third International Conference on?Computing and Data Science, CONF-CDS 2021, held online in August 2021.?.The 22 full papers 9 short papers presented in this volume were thoroughly reviewed and selected from the 85 qualified submissions. They are organized in topical sections on advances in deep learning; algorithms in machine learning and statistics; advances in natural language processing..
出版日期Conference proceedings 2021
關(guān)鍵詞artificial intelligence; communication channels (information theory); communication systems; computer n
版次1
doihttps://doi.org/10.1007/978-981-16-8885-0
isbn_softcover978-981-16-8884-3
isbn_ebook978-981-16-8885-0Series ISSN 1865-0929 Series E-ISSN 1865-0937
issn_series 1865-0929
copyrightSpringer Nature Singapore Pte Ltd. 2021
The information of publication is updating

書目名稱Computing and Data Science影響因子(影響力)




書目名稱Computing and Data Science影響因子(影響力)學(xué)科排名




書目名稱Computing and Data Science網(wǎng)絡(luò)公開度




書目名稱Computing and Data Science網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Computing and Data Science被引頻次




書目名稱Computing and Data Science被引頻次學(xué)科排名




書目名稱Computing and Data Science年度引用




書目名稱Computing and Data Science年度引用學(xué)科排名




書目名稱Computing and Data Science讀者反饋




書目名稱Computing and Data Science讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:11:12 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:35:11 | 只看該作者
https://doi.org/10.1007/978-3-540-72228-1 of historical data is applied to verify the validity of the model. Meanwhile, this method is compared with linear regression model and deep neural networks, which are two popular models for data regression.
地板
發(fā)表于 2025-3-22 08:38:36 | 只看該作者
5#
發(fā)表于 2025-3-22 11:58:32 | 只看該作者
Drought Level Prediction with Deep Learningistinguishing higher drought levels than other methods. Overall, we conclude that deep learning models have the best performance which exceeds machine learning, but under the current drought grade classification standards, the existing methods cannot distinguish the higher drought grades well.
6#
發(fā)表于 2025-3-22 15:06:29 | 只看該作者
Car First or Pedestrian First? Motion Prediction and Planning in Human-Robot Interactions other models on the UCY data-set. We also conducted experiments to compare the resulting paths with our prediction and those with naive and simple linear prediction. The result showed that our system can effectively generate safe and efficient future paths for autonomous vehicles.
7#
發(fā)表于 2025-3-22 20:56:06 | 只看該作者
Application of Graphical Convolutional Networks to the Safety Assessment of Container Ship Voyages of historical data is applied to verify the validity of the model. Meanwhile, this method is compared with linear regression model and deep neural networks, which are two popular models for data regression.
8#
發(fā)表于 2025-3-22 22:56:07 | 只看該作者
Multi-channel Relation Modeling for Session-Based Recommendation with Self-supervised Learningupervised learning to maximizing mutual information between relationships. Our method fully leverages the possible complex structure in the data, which has a certain practical significance in the specific application.
9#
發(fā)表于 2025-3-23 02:00:14 | 只看該作者
10#
發(fā)表于 2025-3-23 06:30:08 | 只看該作者
Computing and Data Science978-981-16-8885-0Series ISSN 1865-0929 Series E-ISSN 1865-0937
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 06:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永丰县| 平乐县| 蒙山县| 汤阴县| 卢湾区| 磐石市| 石河子市| 福海县| 蚌埠市| 和硕县| 齐齐哈尔市| 贵南县| 永春县| 古浪县| 通榆县| 泾阳县| 拜泉县| 平潭县| 竹山县| 瓮安县| 商丘市| 万源市| 和政县| 平乡县| 马边| 亳州市| 邹城市| 金川县| 隆昌县| 龙里县| 呼和浩特市| 大厂| 团风县| 天祝| 吉林市| 和平区| 九龙城区| 应城市| 金寨县| 禄劝| 灵武市|