找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computing and Combinatorics; 29th International C Weili Wu,Guangmo Tong Conference proceedings 2024 The Editor(s) (if applicable) and The A

[復(fù)制鏈接]
樓主: 可擴(kuò)大
11#
發(fā)表于 2025-3-23 11:40:19 | 只看該作者
Topological Network-Control Games two parties aiming to control a given network. In a such game given the network, the players move alternatively. At each turn, a player selects an unclaimed vertex and its unclaimed neighbours within distance .. The players obey the topological condition that all claimed vertices stay connected. Th
12#
發(fā)表于 2025-3-23 15:24:29 | 只看該作者
Lower Bounds of?Functions on?Finite Abelian Groupsrial problems, such as MAX-SAT, MAX-CUT and the knapsack problem, can be recognized as optimization problems on the group .. This paper proposes an algorithm that efficiently computes verifiable lower bounds of functions on finite abelian groups by the technique of the Fourier sum of squares with er
13#
發(fā)表于 2025-3-23 19:53:33 | 只看該作者
14#
發(fā)表于 2025-3-23 23:18:10 | 只看該作者
Random Shortening of?Linear Codes and?Applicationsng explicit constructions matching the parameters of RLCs is challenging, and RLCs are hard to decode efficiently. This motivated several previous works to study the problem of partially derandomizing RLCs, by applying certain operations to an explicit mother code. Among them, one of the most well s
15#
發(fā)表于 2025-3-24 05:42:39 | 只看該作者
Algorithms for?Full-View Coverage of?Targets with?Group Set Coverme slices, two methods (TSC-FTC, FTC-TW) based on Group Set Cover have been proposed to optimize full-view coverage of targets problem. In TSC-FTC, the set of sensors that can cover the most targets are chosen using Group Set Cover in each time slice, and the total number of targets covered througho
16#
發(fā)表于 2025-3-24 07:52:56 | 只看該作者
17#
發(fā)表于 2025-3-24 13:08:27 | 只看該作者
18#
發(fā)表于 2025-3-24 15:47:14 | 只看該作者
19#
發(fā)表于 2025-3-24 21:06:56 | 只看該作者
978-3-031-49192-4The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
20#
發(fā)表于 2025-3-24 23:38:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 11:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
堆龙德庆县| 郸城县| 新建县| 增城市| 水富县| 岳池县| 新晃| 阳西县| 隆子县| 南昌市| 车险| 绥滨县| 阳春市| 广西| 嘉定区| 温泉县| 敦煌市| 铁力市| 天水市| 黄浦区| 南皮县| 伊宁县| 元氏县| 阳原县| 宁波市| 周宁县| 萝北县| 宣城市| 灌云县| 高尔夫| 钦州市| 延寿县| 岢岚县| 西昌市| 章丘市| 馆陶县| 莱芜市| 哈密市| 长沙市| 余姚市| 佛学|