找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computing and Combinatorics; 19th International C Ding-Zhu Du,Guochuan Zhang Conference proceedings 2013 Springer-Verlag Berlin Heidelberg

[復(fù)制鏈接]
樓主: Washington
31#
發(fā)表于 2025-3-26 22:47:17 | 只看該作者
Conference proceedings 2013na, in June 2013. The 56 revised full papers presented were carefully reviewed and selected from 120 submissions. There was a co-organized workshop on discrete algorithms of which 8 short papers were accepted and a workshop on computational social networks where 12 papers out of 25 submissions were accepted.
32#
發(fā)表于 2025-3-27 02:51:02 | 只看該作者
Ding-Zhu Du,Guochuan ZhangUp-to-date results.Fast track conference proceedings.State-of-the-art report
33#
發(fā)表于 2025-3-27 07:53:53 | 只看該作者
34#
發(fā)表于 2025-3-27 10:15:12 | 只看該作者
35#
發(fā)表于 2025-3-27 15:39:54 | 只看該作者
978-3-642-38767-8Springer-Verlag Berlin Heidelberg 2013
36#
發(fā)表于 2025-3-27 20:12:37 | 只看該作者
37#
發(fā)表于 2025-3-28 01:19:03 | 只看該作者
https://doi.org/10.1007/BFb0008699e famous secretary problem asks to identify a stopping rule that maximizes the probability of selecting the maximum element in a sequence presented in uniformly random order. In a similar vein, the prophet inequality of Krengel, Sucheston, and Garling establishes the existence of an online algorithm
38#
發(fā)表于 2025-3-28 03:51:18 | 只看該作者
https://doi.org/10.1007/BFb0008699with anonymous bidders with respect to the best fixed-price scheme. Previous works show that the optimal solution for this problem is in the range [1.6595,2]. We give a new lower bound of 1.68 and design an .(..) algorithm for computing upper bounds as a function of the number of bidders .. Our algo
39#
發(fā)表于 2025-3-28 10:07:00 | 只看該作者
40#
發(fā)表于 2025-3-28 12:48:19 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 17:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
百色市| 平泉县| 清水河县| 琼结县| 重庆市| 宿州市| 泽库县| 安顺市| 郧西县| 武陟县| 车致| 湄潭县| 元江| 镇雄县| 本溪市| 新津县| 阿拉善右旗| 阳新县| 娄烦县| 富顺县| 麟游县| 巢湖市| 龙南县| 宣威市| 双城市| 新田县| 合作市| 霍林郭勒市| 托里县| 玉屏| 青铜峡市| 石首市| 开封县| 大足县| 昌平区| 招远市| 赣州市| 长乐市| 彩票| 崇文区| 陇南市|