找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computing Qualitatively Correct Approximations of Balance Laws; Exponential-Fit, Wel Laurent Gosse Book 2013 Springer-Verlag Italia 2013 As

[復(fù)制鏈接]
21#
發(fā)表于 2025-3-25 05:40:55 | 只看該作者
22#
發(fā)表于 2025-3-25 08:12:18 | 只看該作者
Nichtalkoholische Steatohepatitis (NASH) mainly by Chandrasekhar, Case, Cercignani, Siewert and Zweifel. In particular, Chandrasekhar’s discrete ordinates approximation has been refined by Siewert and his collaborators into a so-called . (ADO) method through a systematic use of elementary solutions. It appeared that it was exactly what is
23#
發(fā)表于 2025-3-25 13:21:04 | 只看該作者
24#
發(fā)表于 2025-3-25 15:49:23 | 只看該作者
Siegfried Seeber,Jochen Schütte. .. [7, 38], because it deals with a statistical description which makes sense in view of the many electrons in a typical semiconductor. Accordingly, one deals with . (., ., .) ∈ [0,1], a distribution function describing the statistical repartition of electrons at time . ≥ 0, located around the loc
25#
發(fā)表于 2025-3-25 23:53:28 | 只看該作者
Prinzipien der Strahlentherapienear relaxation kinetic models leads to complications. There is an alternative: namely, when considering a Fokker-Planck approximation of the relaxation term, the steady-state equation can be reduced to a Sturm-Liouville eigenvalue problem. Techniques available for this class of differential equatio
26#
發(fā)表于 2025-3-26 03:34:48 | 只看該作者
27#
發(fā)表于 2025-3-26 07:41:13 | 只看該作者
28#
發(fā)表于 2025-3-26 11:31:45 | 只看該作者
29#
發(fā)表于 2025-3-26 15:17:40 | 只看該作者
30#
發(fā)表于 2025-3-26 18:06:22 | 只看該作者
https://doi.org/10.1007/3-540-27648-3ple. This feature is revealed by projecting the linearized Boltzmann model onto properly chosen directions (which were originally discovered by Cercignani in the sixties) in a Hilbert space. The shear flow effects follow a scalar integro -differential equation whereas the heat transfer is described by a 2 × 2 coupled system.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 23:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
衢州市| 静乐县| 资中县| 宜州市| 甘南县| 长葛市| 布拖县| 司法| 中西区| 北川| 剑河县| 左权县| 永仁县| 平阴县| 安溪县| 南郑县| 泰安市| 乌兰县| 喜德县| 汉川市| 海淀区| 新野县| 密云县| 湄潭县| 柯坪县| 肥东县| 岚皋县| 彭阳县| 萍乡市| 东明县| 镇巴县| 大庆市| 简阳市| 清丰县| 锦屏县| 洪江市| 民勤县| 镇雄县| 突泉县| 琼海市| 咸宁市|