找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2022 Workshops; Tel Aviv, Israel, Oc Leonid Karlinsky,Tomer Michaeli,Ko Nishino Conference proceedings 2023 The Edit

[復(fù)制鏈接]
查看: 26887|回復(fù): 55
樓主
發(fā)表于 2025-3-21 19:47:08 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Computer Vision – ECCV 2022 Workshops
副標題Tel Aviv, Israel, Oc
編輯Leonid Karlinsky,Tomer Michaeli,Ko Nishino
視頻videohttp://file.papertrans.cn/235/234284/234284.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Computer Vision – ECCV 2022 Workshops; Tel Aviv, Israel, Oc Leonid Karlinsky,Tomer Michaeli,Ko Nishino Conference proceedings 2023 The Edit
描述The 8-volume set, comprising the LNCS books 13801 until 13809, constitutes the refereed proceedings of 38 out of the 60 workshops held at the 17th European Conference on Computer Vision, ECCV 2022. The conference took place in Tel Aviv, Israel, during October 23-27, 2022; the workshops were held hybrid or online..The 367 full papers included in this volume set were carefully reviewed and selected for inclusion in the ECCV 2022 workshop proceedings. They were organized in individual parts as follows:..Part I:. W01 - AI for Space; W02 - Vision for Art; W03 - Adversarial Robustness in the Real World; W04 - Autonomous Vehicle Vision..Part II:. W05 - Learning With Limited and Imperfect Data; W06 - Advances in Image Manipulation;..Part III:. W07 - Medical Computer Vision; W08 - Computer Vision for Metaverse; W09 - Self-Supervised Learning: What Is Next?;..Part IV:. W10 - Self-Supervised Learning for Next-Generation Industry-LevelAutonomous Driving; W11 - ISIC Skin Image Analysis; W12 - Cross-Modal Human-Robot Interaction; W13 - Text in Everything; W14 - BioImage Computing; W15 - Visual Object-Oriented Learning Meets Interaction: Discovery, Representations, and Applications; W16 - AI for
出版日期Conference proceedings 2023
關(guān)鍵詞artificial intelligence; computer vision; education; face recognition; gesture recognition; Human-Compute
版次1
doihttps://doi.org/10.1007/978-3-031-25085-9
isbn_softcover978-3-031-25084-2
isbn_ebook978-3-031-25085-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Computer Vision – ECCV 2022 Workshops影響因子(影響力)




書目名稱Computer Vision – ECCV 2022 Workshops影響因子(影響力)學(xué)科排名




書目名稱Computer Vision – ECCV 2022 Workshops網(wǎng)絡(luò)公開度




書目名稱Computer Vision – ECCV 2022 Workshops網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Computer Vision – ECCV 2022 Workshops被引頻次




書目名稱Computer Vision – ECCV 2022 Workshops被引頻次學(xué)科排名




書目名稱Computer Vision – ECCV 2022 Workshops年度引用




書目名稱Computer Vision – ECCV 2022 Workshops年度引用學(xué)科排名




書目名稱Computer Vision – ECCV 2022 Workshops讀者反饋




書目名稱Computer Vision – ECCV 2022 Workshops讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:46:48 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:54:11 | 只看該作者
Trans6D: Transformer-Based 6D Object Pose Estimation and?Refinementdows, cross-attention, and token pooling operations, which is used to predict dense 2D-3D correspondence maps; (ii) a pure Transformer-based pose refinement module (Trans6D+) which refines the estimated poses iteratively. Extensive experiments show that the proposed approach achieves state-of-the-ar
地板
發(fā)表于 2025-3-22 07:14:55 | 只看該作者
Learning to?Estimate Multi-view Pose from?Object Silhouettes cues for multi-view relationships in a data-driven way. We show that our network generalizes to unseen synthetic and real object instances under reasonable assumptions about the input pose distribution of the images, and that the estimates are suitable to initialize state-of-the-art 3D reconstructi
5#
發(fā)表于 2025-3-22 08:44:25 | 只看該作者
6#
發(fā)表于 2025-3-22 16:57:44 | 只看該作者
Fuse and?Attend: Generalized Embedding Learning for?Art and?Sketchesmains. During training, given a query image from a domain, we employ gated fusion and attention to generate a positive example, which carries a broad notion of the semantics of the query object category (from across multiple domains). By virtue of Contrastive Learning, we pull the embeddings of the
7#
發(fā)表于 2025-3-22 17:03:17 | 只看該作者
8#
發(fā)表于 2025-3-22 22:45:08 | 只看該作者
9#
發(fā)表于 2025-3-23 02:07:53 | 只看該作者
10#
發(fā)表于 2025-3-23 05:53:11 | 只看該作者
Lothar Lammersen,Robert Schwagers. To tackle these limitations, we propose a new localization uncertainty estimation method called UAD for anchor-free object detection. Our method captures the uncertainty in four directions of box offsets?(left, right, top, bottom) that are homogeneous, so that it can tell which direction is uncer
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-26 05:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
工布江达县| 修水县| 夏邑县| 台安县| 新丰县| 石狮市| 河北区| 广南县| 交城县| 商洛市| 布尔津县| 浠水县| 荣成市| 洛川县| 新郑市| 阜新| 东台市| 察哈| 南宫市| 巴中市| 辽阳县| 班戈县| 四子王旗| 吴桥县| 顺昌县| 新田县| 金乡县| 治多县| 讷河市| 鄢陵县| 甘肃省| 全南县| 榆林市| 剑阁县| 安顺市| 鄂州市| 启东市| 隆安县| 蓬溪县| 资兴市| 绥江县|