找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2022; 17th European Confer Shai Avidan,Gabriel Brostow,Tal Hassner Conference proceedings 2022 The Editor(s) (if app

[復(fù)制鏈接]
樓主: 脾氣好
21#
發(fā)表于 2025-3-25 06:08:58 | 只看該作者
22#
發(fā)表于 2025-3-25 10:04:41 | 只看該作者
,Few-Shot End-to-End Object Detection via?Constantly Concentrated Encoding Across Heads,oposals to facilitate the adaptation at lower heads. Extensive experimental results show that our model brought clear gain on benchmarks. Detailed ablation studies are provided to justify the selection of each component.
23#
發(fā)表于 2025-3-25 12:22:22 | 只看該作者
,Implicit Neural Representations for?Image Compression,rtion performance. Our contributions to source compression with INRs vastly outperform prior work. We show that our INR-based compression algorithm, meta-learning combined with SIREN and positional encodings, outperforms JPEG2000 and Rate-Distortion Autoencoders on Kodak with 2x reduced dimensionali
24#
發(fā)表于 2025-3-25 17:28:48 | 只看該作者
25#
發(fā)表于 2025-3-25 23:18:09 | 只看該作者
26#
發(fā)表于 2025-3-26 02:30:44 | 只看該作者
,Learning Ego 3D Representation as?Ray Tracing,presentation from 2D images without any depth supervision, and with the built-in geometry structure consistent .?BEV. Despite its simplicity and versatility, extensive experiments on standard BEV visual tasks (., camera-based 3D object detection and BEV segmentation) show that our model outperforms
27#
發(fā)表于 2025-3-26 05:06:03 | 只看該作者
28#
發(fā)表于 2025-3-26 10:42:01 | 只看該作者
,Hierarchically Self-supervised Transformer for?Human Skeleton Representation Learning, covering three skeleton-based downstream tasks including action recognition, action detection, and motion prediction. Under both supervised and semi-supervised evaluation protocols, our method achieves the state-of-the-art performance. Additionally, we demonstrate that the prior knowledge learned b
29#
發(fā)表于 2025-3-26 13:19:34 | 只看該作者
30#
發(fā)表于 2025-3-26 16:52:42 | 只看該作者
,Balancing Stability and?Plasticity Through Advanced Null Space in?Continual Learning,ove the performance of the current task. Finally, we theoretically find that null space plays a key role in plasticity and stability, respectively. Experimental results show that the proposed method can achieve better performance compared to state-of-the-art continual learning approaches.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 17:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
中西区| 南投市| 大名县| 廊坊市| 渝北区| 宜都市| 亚东县| 宁津县| 宜兴市| 台前县| 舟山市| 芦山县| 洪洞县| 绥江县| 龙南县| 手机| 石首市| 右玉县| 米易县| 嘉善县| 城步| 五河县| 桂林市| 日喀则市| 荆州市| 遂宁市| 霍州市| 庆云县| 京山县| 洛浦县| 平度市| 大姚县| 丰宁| 镇沅| 和林格尔县| 拜泉县| 重庆市| 遵义县| 疏附县| 乌拉特后旗| 新龙县|