找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2022; 17th European Confer Shai Avidan,Gabriel Brostow,Tal Hassner Conference proceedings 2022 The Editor(s) (if app

[復制鏈接]
樓主: Falter
11#
發(fā)表于 2025-3-23 13:38:59 | 只看該作者
12#
發(fā)表于 2025-3-23 16:45:14 | 只看該作者
,Weakly Supervised Object Localization Through Inter-class Feature Similarity and?Intra-class Appearused features for WSOL. However, existing CAM-based methods tend to excessively pursue discriminative features for object recognition and hence ignore the feature similarities among different categories, thereby leading to CAMs incomplete for object localization. In addition, CAMs are sensitive to b
13#
發(fā)表于 2025-3-23 18:56:45 | 只看該作者
,Active Learning Strategies for?Weakly-Supervised Object Detection,formance gap between them. We propose to narrow this gap by fine-tuning a base pre-trained weakly-supervised detector with a few fully-annotated samples automatically selected from the training set using “box-in-box” (BiB), a novel active learning strategy designed specifically to address the well-d
14#
發(fā)表于 2025-3-23 23:44:01 | 只看該作者
15#
發(fā)表于 2025-3-24 04:35:37 | 只看該作者
16#
發(fā)表于 2025-3-24 08:09:14 | 只看該作者
,Unsupervised Visual Representation Learning by?Synchronous Momentum Grouping,asses the vanilla supervised learning. Two mainstream unsupervised learning schemes are the instance-level contrastive framework and clustering-based schemes. The former adopts the extremely fine-grained instance-level discrimination whose supervisory signal is not efficient due to the false negativ
17#
發(fā)表于 2025-3-24 12:09:34 | 只看該作者
Improving Few-Shot Part Segmentation Using Coarse Supervision,oit coarse labels such as figure-ground masks and keypoint locations that are readily available for some categories to improve part segmentation models. A key challenge is that these annotations were collected for different tasks and with different labeling styles and cannot be readily mapped to the
18#
發(fā)表于 2025-3-24 17:00:13 | 只看該作者
,What to?Hide from?Your Students: Attention-Guided Masked Image Modeling,e token masking differs from token masking in text, due to the amount and correlation of tokens in an image. In particular, to generate a challenging pretext task for MIM, we advocate a shift from random masking to informed masking. We develop and exhibit this idea in the context of distillation-bas
19#
發(fā)表于 2025-3-24 22:36:56 | 只看該作者
Pointly-Supervised Panoptic Segmentation,evel labels used by fully supervised methods, point-level labels only provide a single point for each target as supervision, significantly reducing the annotation burden. We formulate the problem in an end-to-end framework by simultaneously generating panoptic pseudo-masks from point-level labels an
20#
發(fā)表于 2025-3-25 02:30:22 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 13:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
哈尔滨市| 大关县| 玉屏| 吉水县| 德格县| 喀喇沁旗| 云梦县| 寿光市| 娱乐| 湖州市| 台中市| SHOW| 华安县| 盐山县| 永兴县| 深泽县| 咸丰县| 锦屏县| 涟源市| 邢台县| 都江堰市| 秦皇岛市| 龙胜| 靖宇县| 驻马店市| 西青区| 丽水市| 安多县| 乌鲁木齐市| 肥城市| 嵩明县| 兴义市| 子长县| 谢通门县| 宽甸| 武胜县| 汾阳市| 互助| 黔西县| 汉源县| 浮梁县|