找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2022; 17th European Confer Shai Avidan,Gabriel Brostow,Tal Hassner Conference proceedings 2022 The Editor(s) (if app

[復(fù)制鏈接]
樓主: 調(diào)戲
21#
發(fā)表于 2025-3-25 06:19:52 | 只看該作者
22#
發(fā)表于 2025-3-25 11:21:31 | 只看該作者
,Deep Fourier-Based Exposure Correction Network with?Spatial-Frequency Interaction,n (SFI) block in two formats tailored to these two sub-networks, which interactively process the local spatial features and the global frequency information to encourage the complementary learning. Extensive experiments demonstrate that our method achieves superior results than other approaches with
23#
發(fā)表于 2025-3-25 14:01:05 | 只看該作者
,Frequency and?Spatial Dual Guidance for?Image Dehazing,al domain. Extensive experiments on synthetic and real-world datasets demonstrate that our method outperforms the state-of-the-art approaches both visually and quantitatively. Our code is released publicly at ..
24#
發(fā)表于 2025-3-25 16:49:18 | 只看該作者
,Learning Discriminative Shrinkage Deep Networks for?Image Deconvolution,rties of the Maxout function and develop a deep CNN model with Maxout layers to learn discriminative shrinkage functions, which directly approximates the solutions of these two sub-problems. Moreover, the fast-Fourier-transform-based image restoration usually leads to ringing artifacts. At the same
25#
發(fā)表于 2025-3-25 23:05:08 | 只看該作者
,KXNet: A Model-Driven Deep Neural Network for?Blind Super-Resolution,ear physical patterns and the mutually iterative process between blur kernel and HR image can soundly guide the KXNet to be evolved in the right direction. Extensive experiments on synthetic and real data finely demonstrate the superior accuracy and generality of our method beyond the current repres
26#
發(fā)表于 2025-3-26 02:20:54 | 只看該作者
ARM: Any-Time Super-Resolution Method, computation-performance tradeoff. Moreover, each SISR subnet shares weights of the ARM supernet, thus no extra parameters are introduced. The setting of multiple subnets can well adapt the computational cost of SISR model to the dynamically available hardware resources, allowing the SISR task to be
27#
發(fā)表于 2025-3-26 05:01:14 | 只看該作者
28#
發(fā)表于 2025-3-26 12:25:33 | 只看該作者
,RealFlow: EM-Based Realistic Optical Flow Dataset Generation from?Videos,bi-directional hole filling techniques to alleviate the artifacts of the image synthesis. In the E-step, RIPR renders new images to create a large quantity of training data. In the M-step, we utilize the generated training data to train an optical flow network, which can be used to estimate optical
29#
發(fā)表于 2025-3-26 15:33:11 | 只看該作者
30#
發(fā)表于 2025-3-26 18:02:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-26 22:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东港市| 托克托县| 鲁山县| 东平县| 左贡县| 桂林市| 大安市| 全椒县| 司法| 兰州市| 贵南县| 礼泉县| 邵阳市| 江门市| 资中县| 玛多县| 会理县| 惠东县| 凤翔县| 隆林| 波密县| 陵水| 同江市| 阜宁县| 资阳市| 灵寿县| 七台河市| 祥云县| 宜春市| 上高县| 开封市| 青冈县| 通河县| 漳州市| 陕西省| 丰县| 秦安县| 株洲县| 治县。| 清镇市| 星子县|