找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2022; 17th European Confer Shai Avidan,Gabriel Brostow,Tal Hassner Conference proceedings 2022 The Editor(s) (if app

[復(fù)制鏈接]
樓主: 調(diào)戲
21#
發(fā)表于 2025-3-25 06:19:52 | 只看該作者
22#
發(fā)表于 2025-3-25 11:21:31 | 只看該作者
,Deep Fourier-Based Exposure Correction Network with?Spatial-Frequency Interaction,n (SFI) block in two formats tailored to these two sub-networks, which interactively process the local spatial features and the global frequency information to encourage the complementary learning. Extensive experiments demonstrate that our method achieves superior results than other approaches with
23#
發(fā)表于 2025-3-25 14:01:05 | 只看該作者
,Frequency and?Spatial Dual Guidance for?Image Dehazing,al domain. Extensive experiments on synthetic and real-world datasets demonstrate that our method outperforms the state-of-the-art approaches both visually and quantitatively. Our code is released publicly at ..
24#
發(fā)表于 2025-3-25 16:49:18 | 只看該作者
,Learning Discriminative Shrinkage Deep Networks for?Image Deconvolution,rties of the Maxout function and develop a deep CNN model with Maxout layers to learn discriminative shrinkage functions, which directly approximates the solutions of these two sub-problems. Moreover, the fast-Fourier-transform-based image restoration usually leads to ringing artifacts. At the same
25#
發(fā)表于 2025-3-25 23:05:08 | 只看該作者
,KXNet: A Model-Driven Deep Neural Network for?Blind Super-Resolution,ear physical patterns and the mutually iterative process between blur kernel and HR image can soundly guide the KXNet to be evolved in the right direction. Extensive experiments on synthetic and real data finely demonstrate the superior accuracy and generality of our method beyond the current repres
26#
發(fā)表于 2025-3-26 02:20:54 | 只看該作者
ARM: Any-Time Super-Resolution Method, computation-performance tradeoff. Moreover, each SISR subnet shares weights of the ARM supernet, thus no extra parameters are introduced. The setting of multiple subnets can well adapt the computational cost of SISR model to the dynamically available hardware resources, allowing the SISR task to be
27#
發(fā)表于 2025-3-26 05:01:14 | 只看該作者
28#
發(fā)表于 2025-3-26 12:25:33 | 只看該作者
,RealFlow: EM-Based Realistic Optical Flow Dataset Generation from?Videos,bi-directional hole filling techniques to alleviate the artifacts of the image synthesis. In the E-step, RIPR renders new images to create a large quantity of training data. In the M-step, we utilize the generated training data to train an optical flow network, which can be used to estimate optical
29#
發(fā)表于 2025-3-26 15:33:11 | 只看該作者
30#
發(fā)表于 2025-3-26 18:02:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-26 23:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
高青县| 邢台市| 桐乡市| 聂拉木县| 太谷县| 阿瓦提县| 海门市| 塔城市| 法库县| 包头市| 宁强县| 八宿县| 扎囊县| 郑州市| 宜宾市| 衡山县| 师宗县| 克拉玛依市| 柯坪县| 荣成市| 焦作市| 运城市| 犍为县| 德清县| 夏津县| 长子县| 瑞昌市| 新津县| 日喀则市| 增城市| 七台河市| 平谷区| 扶绥县| 嫩江县| 茌平县| 云阳县| 江北区| 清新县| 抚松县| 顺义区| 清涧县|