找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2022; 17th European Confer Shai Avidan,Gabriel Brostow,Tal Hassner Conference proceedings 2022 The Editor(s) (if app

[復(fù)制鏈接]
樓主: Falter
51#
發(fā)表于 2025-3-30 10:12:12 | 只看該作者
52#
發(fā)表于 2025-3-30 12:45:33 | 只看該作者
Massimo G. Colombo,Marco Delmastroose an efficient Attention Guided Adversarial Training mechanism. Specifically, relying on the specialty of self-attention, we actively remove certain patch embeddings of each layer with an attention-guided dropping strategy during adversarial training. The slimmed self-attention modules accelerate
53#
發(fā)表于 2025-3-30 18:02:19 | 只看該作者
AU-Aware 3D Face Reconstruction through Personalized AU-Specific Blendshape Learning,basis coefficients such that they are semantically mapped to each AU. Our AU-aware 3D reconstruction model generates accurate 3D expressions composed by semantically meaningful AU motion components. Furthermore, the output of the model can be directly applied to generate 3D AU occurrence predictions
54#
發(fā)表于 2025-3-30 21:55:44 | 只看該作者
55#
發(fā)表于 2025-3-31 04:17:20 | 只看該作者
56#
發(fā)表于 2025-3-31 08:58:54 | 只看該作者
,Pre-training Strategies and?Datasets for?Facial Representation Learning,ncluding their size and quality (labelled, unlabelled or even uncurated). (d) To draw our conclusions, we conducted a very large number of experiments. Our main two findings are: (1) Unsupervised pre-training on completely in-the-wild, uncurated data provides consistent and, in some cases, significa
57#
發(fā)表于 2025-3-31 09:14:05 | 只看該作者
,Look Both?Ways: Self-supervising Driver Gaze Estimation and?Road Scene Saliency,framework to enforce this consistency, allowing the gaze model to supervise the scene saliency model, and vice versa. We implement a prototype of our method and test it with our dataset, to show that compared to a supervised approach it can yield better gaze estimation and scene saliency estimation
58#
發(fā)表于 2025-3-31 17:25:14 | 只看該作者
59#
發(fā)表于 2025-3-31 18:12:49 | 只看該作者
,3D Face Reconstruction with?Dense Landmarks, facial performance capture in both monocular and multi-view scenarios. Finally, our method is highly efficient: we can predict dense landmarks and fit our 3D face model at over 150FPS on a single CPU thread. Please see our website: ..
60#
發(fā)表于 2025-4-1 00:12:42 | 只看該作者
,Emotion-aware Multi-view Contrastive Learning for?Facial Emotion Recognition,entation in the polar coordinate, i.e., the Arousal-Valence space. Experimental results show that the proposed method improves the PCC/CCC performance by more than 10% compared to the runner-up method in the wild datasets and is also qualitatively better in terms of neural activation map. Code is av
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 16:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新龙县| 泰来县| 灵寿县| 泽普县| 红河县| 龙里县| 绥江县| 嘉兴市| 岳普湖县| 炎陵县| 柯坪县| 青川县| 济阳县| 历史| 绥中县| 尼玛县| 江西省| 兴城市| 阿拉善右旗| 青阳县| 利川市| 呼图壁县| 新和县| 绿春县| 绵阳市| 迁安市| 桑日县| 保靖县| 潼南县| 乌什县| 黔江区| 都江堰市| 杂多县| 中阳县| 宝清县| 临朐县| 舒城县| 青浦区| 大埔县| 英山县| 临武县|