找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2022; 17th European Confer Shai Avidan,Gabriel Brostow,Tal Hassner Conference proceedings 2022 The Editor(s) (if app

[復(fù)制鏈接]
查看: 39924|回復(fù): 48
樓主
發(fā)表于 2025-3-21 18:25:32 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Computer Vision – ECCV 2022
副標(biāo)題17th European Confer
編輯Shai Avidan,Gabriel Brostow,Tal Hassner
視頻videohttp://file.papertrans.cn/235/234253/234253.mp4
叢書(shū)名稱Lecture Notes in Computer Science
圖書(shū)封面Titlebook: Computer Vision – ECCV 2022; 17th European Confer Shai Avidan,Gabriel Brostow,Tal Hassner Conference proceedings 2022 The Editor(s) (if app
描述.The 39-volume set, comprising the LNCS books 13661 until 13699, constitutes the refereed proceedings of the 17th European Conference on Computer Vision, ECCV 2022, held in Tel Aviv, Israel, during October 23–27, 2022..?.The 1645 papers presented in these proceedings were carefully reviewed and selected from a total of 5804 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation..
出版日期Conference proceedings 2022
關(guān)鍵詞artificial intelligence; color images; computer networks; computer vision; face recognition; image coding
版次1
doihttps://doi.org/10.1007/978-3-031-19784-0
isbn_softcover978-3-031-19783-3
isbn_ebook978-3-031-19784-0Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱Computer Vision – ECCV 2022影響因子(影響力)




書(shū)目名稱Computer Vision – ECCV 2022影響因子(影響力)學(xué)科排名




書(shū)目名稱Computer Vision – ECCV 2022網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Computer Vision – ECCV 2022網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Computer Vision – ECCV 2022被引頻次




書(shū)目名稱Computer Vision – ECCV 2022被引頻次學(xué)科排名




書(shū)目名稱Computer Vision – ECCV 2022年度引用




書(shū)目名稱Computer Vision – ECCV 2022年度引用學(xué)科排名




書(shū)目名稱Computer Vision – ECCV 2022讀者反饋




書(shū)目名稱Computer Vision – ECCV 2022讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:01:20 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:37:02 | 只看該作者
地板
發(fā)表于 2025-3-22 07:40:16 | 只看該作者
,Designing One Unified Framework for?High-Fidelity Face Reenactment and?Swapping,and practical-unfriendly. In this paper, we propose an effective end-to-end unified framework to achieve both tasks. Unlike existing methods that directly utilize pre-estimated structures and do not fully exploit their potential similarity, our model sufficiently transfers identity and attribute bas
5#
發(fā)表于 2025-3-22 11:39:32 | 只看該作者
,Sobolev Training for?Implicit Neural Representations with?Approximated Image Derivatives, kinds of signals due to its continuous, differentiable properties, showing superiorities to classical discretized representations. However, the training of neural networks for INRs only utilizes input-output pairs, and the derivatives of the target output with respect to the input, which can be acc
6#
發(fā)表于 2025-3-22 15:40:47 | 只看該作者
7#
發(fā)表于 2025-3-22 20:43:57 | 只看該作者
8#
發(fā)表于 2025-3-23 00:30:02 | 只看該作者
9#
發(fā)表于 2025-3-23 01:42:04 | 只看該作者
Deep Bayesian Video Frame Interpolation,part. Our approach learns posterior distributions of optical flows and frames to be interpolated, which is optimized via learned gradient descent for fast convergence. Each learned step is a lightweight network manipulating gradients of the log-likelihood of estimated frames and flows. Such gradient
10#
發(fā)表于 2025-3-23 07:50:20 | 只看該作者
,Cross Attention Based Style Distribution for?Controllable Person Image Synthesis,e propose a cross attention based style distribution module that computes between the source semantic styles and target pose for pose transfer. The module intentionally selects the style represented by each semantic and distributes them according to the target pose. The attention matrix in cross att
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 08:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
开原市| 蓝田县| 青铜峡市| 邻水| 昌吉市| 乐东| 安化县| 青岛市| 抚远县| 龙陵县| 德昌县| 法库县| 商城县| 酉阳| 唐海县| 名山县| 沛县| 永州市| 麻栗坡县| 宜城市| 元江| 普陀区| 华坪县| 广西| 包头市| 江安县| 马边| 新龙县| 雷州市| 天全县| 鹤壁市| 天峻县| 巨鹿县| 汪清县| 祁连县| 宜兰市| 隆尧县| 永宁县| 凤庆县| 民权县| 孙吴县|