找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2022; 17th European Confer Shai Avidan,Gabriel Brostow,Tal Hassner Conference proceedings 2022 The Editor(s) (if app

[復制鏈接]
樓主: HEIR
11#
發(fā)表于 2025-3-23 11:05:14 | 只看該作者
https://doi.org/10.1007/978-1-349-02606-7he multiple moving cameras recording setup. We adopt a hybrid labelling pipeline leveraging deep estimation models as well as manual annotations to obtain good quality keypoint sequences at a reduced cost. Our efforts produced the BRACE dataset, which contains over 3?h and 30?min of densely annotate
12#
發(fā)表于 2025-3-23 17:00:10 | 只看該作者
,ECCV Caption: Correcting False Negatives by?Collecting Machine-and-Human-verified Image-Caption Asscall@K (R@K). We re-evaluate the existing 25 VL models on existing and proposed benchmarks. Our findings are that the existing benchmarks, such as COCO 1K R@K, COCO 5K R@K, CxC R@1 are highly correlated with each other, while the rankings change when we shift to the ECCV mAP@R. Lastly, we delve into
13#
發(fā)表于 2025-3-23 20:38:20 | 只看該作者
14#
發(fā)表于 2025-3-24 00:45:09 | 只看該作者
15#
發(fā)表于 2025-3-24 05:03:04 | 只看該作者
,PartImageNet: A Large, High-Quality Dataset of?Parts,compared to existing part datasets (excluding datasets of humans). It can be utilized for many vision tasks including Object Segmentation, Semantic Part Segmentation, Few-shot Learning and Part Discovery. We conduct comprehensive experiments which study these tasks and set up a set of baselines.
16#
發(fā)表于 2025-3-24 09:04:11 | 只看該作者
,A-OKVQA: A Benchmark for?Visual Question Answering Using World Knowledge,the image. We demonstrate the potential of this new dataset through a detailed analysis of its contents and baseline performance measurements over a variety of state-of-the-art vision–language models.
17#
發(fā)表于 2025-3-24 12:02:32 | 只看該作者
18#
發(fā)表于 2025-3-24 15:01:08 | 只看該作者
19#
發(fā)表于 2025-3-24 20:01:57 | 只看該作者
,FS-COCO: Towards Understanding of?Freehand Sketches of?Common Objects in?Context,s the potential benefit of combining the two modalities. In addition, we extend a popular vector sketch LSTM-based encoder to handle sketches with larger complexity than was supported by previous work. Namely, we propose a hierarchical sketch decoder, which we leverage at a sketch-specific “pretext”
20#
發(fā)表于 2025-3-24 23:53:17 | 只看該作者
,Exploring Fine-Grained Audiovisual Categorization with?the?SSW60 Dataset,ds is better than using exclusively image or audio based methods for the task of video classification. We also present interesting modality transfer experiments, enabled by the unique construction of SSW60 to encompass three different modalities. We hope the SSW60 dataset and accompanying baselines
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 03:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
和顺县| 镇巴县| 河东区| 抚远县| 科技| 秀山| 沙湾县| 宝鸡市| 湘潭市| 尼木县| 嘉祥县| 柳林县| 永福县| 察隅县| 新民市| 广水市| 大姚县| 肥城市| 墨玉县| 武义县| 靖西县| 盐池县| 莱芜市| 香格里拉县| 崇阳县| 龙门县| 龙陵县| 喜德县| 寻甸| 晋城| 七台河市| 高要市| 衡山县| 比如县| 辽阳县| 莆田市| 黄石市| 天峨县| 旬阳县| 湟中县| 景宁|