找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2022; 17th European Confer Shai Avidan,Gabriel Brostow,Tal Hassner Conference proceedings 2022 The Editor(s) (if app

[復(fù)制鏈接]
樓主: 欺騙某人
41#
發(fā)表于 2025-3-28 15:19:23 | 只看該作者
,Learning to?Generate Realistic LiDAR Point Clouds, approach produces more realistic samples than other generative models. Furthermore, LiDARGen can sample point clouds conditioned on inputs without retraining. We demonstrate that our proposed generative model could be directly used to densify LiDAR point clouds. Our code is available at: ..
42#
發(fā)表于 2025-3-28 21:42:25 | 只看該作者
,Spatially Invariant Unsupervised 3D Object-Centric Learning and?Scene Decomposition, with an arbitrary number of objects. We evaluate our method on the task of unsupervised scene decomposition. Experimental results demonstrate that . has strong scalability and is capable of detecting and segmenting an unknown number of objects from a point cloud in an unsupervised manner.
43#
發(fā)表于 2025-3-29 00:21:56 | 只看該作者
44#
發(fā)表于 2025-3-29 03:44:22 | 只看該作者
,Learning to?Generate Realistic LiDAR Point Clouds,rages the powerful score-matching energy-based model and formulates the point cloud generation process as a stochastic denoising process in the equirectangular view. This model allows us to sample diverse and high-quality point cloud samples with guaranteed physical feasibility and controllability.
45#
發(fā)表于 2025-3-29 08:06:57 | 只看該作者
,RFNet-4D: Joint Object Reconstruction and?Flow Estimation from?4D Point Clouds,nstruction from time-varying point clouds (a.k.a. 4D point clouds) is generally overlooked. In this paper, we propose a new network architecture, namely RFNet-4D, that jointly reconstruct objects and their motion flows from 4D point clouds. The key insight is that simultaneously performing both task
46#
發(fā)表于 2025-3-29 12:25:21 | 只看該作者
,Diverse Image Inpainting with?Normalizing Flow,he “corrupted region" content consistent with the background and generate a variety of reasonable texture details. However, existing one-stage methods that directly output the inpainting results have to make a trade-off between diversity and consistency. The two-stage methods as the current trend ca
47#
發(fā)表于 2025-3-29 17:12:04 | 只看該作者
,Improved Masked Image Generation with?Token-Critic, their autoregressive counterparts. However, optimal parallel sampling from the true joint distribution of visual tokens remains an open challenge. In this paper we introduce Token-Critic, an auxiliary model to guide the sampling of a non-autoregressive generative transformer. Given a masked-and-rec
48#
發(fā)表于 2025-3-29 20:59:11 | 只看該作者
,TREND: Truncated Generalized Normal Density Estimation of?Inception Embeddings for?GAN Evaluation,butions of the set of ground truth images and the set of generated test images. The Frechét Inception distance is one of the most widely used metrics for evaluation of GANs, which assumes that the features from a trained Inception model for a set of images follow a normal distribution. In this paper
49#
發(fā)表于 2025-3-30 00:46:55 | 只看該作者
,Exploring Gradient-Based Multi-directional Controls in?GANs, the structure of the latent space in GANs largely remains as a black-box, leaving its controllable generation an open problem, especially when spurious correlations between different semantic attributes exist in the image distributions. To address this problem, previous methods typically learn line
50#
發(fā)表于 2025-3-30 07:44:09 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 21:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
深圳市| 锦屏县| 三江| 宿州市| 津南区| 朝阳市| 额敏县| 昂仁县| 姚安县| 探索| 天峨县| 榕江县| 马边| 金华市| 敦煌市| 巩留县| 鄯善县| 旌德县| 改则县| 桦南县| 麻城市| 修文县| 岫岩| 山东省| 万山特区| 新河县| 敦化市| 册亨县| 吉首市| 都匀市| 儋州市| 滕州市| 芜湖市| 大邑县| 蒙山县| 凤庆县| 鲁甸县| 保康县| 聊城市| 上饶县| 贵溪市|