找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2020; 16th European Confer Andrea Vedaldi,Horst Bischof,Jan-Michael Frahm Conference proceedings 2020 Springer Natur

[復(fù)制鏈接]
樓主: 頻率
41#
發(fā)表于 2025-3-28 14:44:15 | 只看該作者
Beyond Monocular Deraining: Stereo Image Deraining via Semantic Understanding,multi-view information respectively. We also propose new stereo based rainy datasets for benchmarking. Experiments on both monocular and the newly proposed stereo rainy datasets demonstrate that the proposed method achieves the state-of-the-art performance.
42#
發(fā)表于 2025-3-28 22:33:00 | 只看該作者
DBQ: A Differentiable Branch Quantizer for Lightweight Deep Neural Networks,s the daunting task of aggressively quantizing lightweight networks such as MobileNetV1, MobileNetV2, and ShuffleNetV2. DBQ achieves state-of-the art results with minimal training overhead and provides the best (pareto-optimal) accuracy-complexity trade-off.
43#
發(fā)表于 2025-3-29 00:26:49 | 只看該作者
All at Once: Temporally Adaptive Multi-frame Interpolation with Advanced Motion Modeling,uracy when complex motion segments are encountered. Results on the Adobe240 dataset show that the proposed method generates visually pleasing, temporally consistent frames, outperforms the current best off-the-shelf method by 1.57?dB in PSNR with 8 times smaller model and 7.7 times faster. The propo
44#
發(fā)表于 2025-3-29 05:59:08 | 只看該作者
A Broader Study of Cross-Domain Few-Shot Learning, as crop disease images, but additionally those that present with an increasing dissimilarity to natural images, such as satellite images, dermatology images, and radiology images. Extensive experiments on the proposed benchmark are performed to evaluate state-of-art meta-learning approaches, transf
45#
發(fā)表于 2025-3-29 07:29:34 | 只看該作者
46#
發(fā)表于 2025-3-29 12:17:38 | 只看該作者
47#
發(fā)表于 2025-3-29 18:49:59 | 只看該作者
SemifreddoNets: Partially Frozen Neural Networks for Efficient Computer Vision Systems,antages of a fully configurable model for many use cases. Furthermore, our system uses repeatable blocks, therefore it has the flexibility to adjust model complexity without requiring any hardware change. The hardware implementation of SemifreddoNets provides up?to an order of magnitude reduction in
48#
發(fā)表于 2025-3-29 20:45:18 | 只看該作者
49#
發(fā)表于 2025-3-30 01:16:19 | 只看該作者
50#
發(fā)表于 2025-3-30 05:03:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 11:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
察隅县| 武邑县| 新安县| 伽师县| 屯昌县| 隆回县| 自贡市| 都安| 宜宾县| 巴林左旗| 肇源县| 定南县| 册亨县| 瑞安市| 乐至县| 汾西县| 金昌市| 崇明县| 两当县| 朔州市| 南平市| 渭源县| 梨树县| 社旗县| 五家渠市| 莱阳市| 沾益县| 金昌市| 民乐县| 萨迦县| 祁连县| 满城县| 鄂托克前旗| 洛扎县| 玛沁县| 庆阳市| 阳原县| 延川县| 东城区| 开平市| 当雄县|