找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2020; 16th European Confer Andrea Vedaldi,Horst Bischof,Jan-Michael Frahm Conference proceedings 2020 Springer Natur

[復(fù)制鏈接]
查看: 46822|回復(fù): 63
樓主
發(fā)表于 2025-3-21 19:10:03 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Computer Vision – ECCV 2020
副標(biāo)題16th European Confer
編輯Andrea Vedaldi,Horst Bischof,Jan-Michael Frahm
視頻videohttp://file.papertrans.cn/235/234221/234221.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Computer Vision – ECCV 2020; 16th European Confer Andrea Vedaldi,Horst Bischof,Jan-Michael Frahm Conference proceedings 2020 Springer Natur
描述The 30-volume set, comprising the LNCS books 12346 until 12375, constitutes the refereed proceedings of the 16th European Conference on Computer Vision, ECCV 2020, which was planned to be held in Glasgow, UK, during August 23-28, 2020. The conference was held virtually due to the COVID-19 pandemic..The 1360 revised papers presented in these proceedings were carefully reviewed and selected from a total of 5025 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation..?..?.
出版日期Conference proceedings 2020
關(guān)鍵詞computer networks; computer vision; Human-Computer Interaction (HCI); image coding; image processing; ima
版次1
doihttps://doi.org/10.1007/978-3-030-58545-7
isbn_softcover978-3-030-58544-0
isbn_ebook978-3-030-58545-7Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書目名稱Computer Vision – ECCV 2020影響因子(影響力)




書目名稱Computer Vision – ECCV 2020影響因子(影響力)學(xué)科排名




書目名稱Computer Vision – ECCV 2020網(wǎng)絡(luò)公開度




書目名稱Computer Vision – ECCV 2020網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Computer Vision – ECCV 2020被引頻次




書目名稱Computer Vision – ECCV 2020被引頻次學(xué)科排名




書目名稱Computer Vision – ECCV 2020年度引用




書目名稱Computer Vision – ECCV 2020年度引用學(xué)科排名




書目名稱Computer Vision – ECCV 2020讀者反饋




書目名稱Computer Vision – ECCV 2020讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:12:46 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:57:25 | 只看該作者
AUTO3D: Novel View Synthesis Through Unsupervisely Learned Variational Viewpoint and Global 3D Reprhe relative-pose in a prior distribution. In various applications, we demonstrate that our model can achieve comparable or even better results than pose/3D model-supervised learning-based novel view synthesis (NVS) methods with any number of input views.
地板
發(fā)表于 2025-3-22 08:02:41 | 只看該作者
5#
發(fā)表于 2025-3-22 10:40:10 | 只看該作者
Soft Anchor-Point Object Detection,evels, respectively. To evaluate the effectiveness, we train a single-stage anchor-free detector called Soft Anchor-Point Detector (SAPD). Experiments show that our concise SAPD pushes the envelope of speed/accuracy trade-off to a new level, outperforming recent state-of-the-art anchor-free and anch
6#
發(fā)表于 2025-3-22 14:17:49 | 只看該作者
Beyond Fixed Grid: Learning Geometric Image Representation with a Deformable Grid, the output layers for the task of object mask annotation, and show that reasoning about object boundaries on our predicted polygonal grid leads to more accurate results over existing pixel-wise and curve-based approaches. We finally showcase . as a standalone module for unsupervised image partition
7#
發(fā)表于 2025-3-22 18:32:45 | 只看該作者
8#
發(fā)表于 2025-3-23 00:12:15 | 只看該作者
Joint Learning of Social Groups, Individuals Action and Sub-group Activities in Videos,-of-the-art results on two widely adopted benchmarks for the traditional group activity recognition task?(assuming individuals of the scene form a single group and predicting a single group activity label for the scene); iii) we introduce new annotations on an existing group activity dataset, re-pur
9#
發(fā)表于 2025-3-23 01:33:11 | 只看該作者
10#
發(fā)表于 2025-3-23 07:44:33 | 只看該作者
Relative Pose Estimation of Calibrated Cameras with Known , Invariants,ion constrained by . invariants, we also present a comprehensive study of existing polynomial formulations for relative pose estimation and discover their relationship. Different formulations are carefully chosen for each proposed problems to achieve best efficiency. Experiments on synthetic and rea
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 03:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
海兴县| 忻州市| 于田县| 寻乌县| 长春市| 奈曼旗| 西青区| 淮滨县| 曲松县| 兴仁县| 平乡县| 石泉县| 科技| 孟州市| 南开区| 崇仁县| 浏阳市| 长春市| 基隆市| 浦城县| 宁乡县| 文水县| 普宁市| 延庆县| 齐齐哈尔市| 新野县| 涿州市| 贵溪市| 杭锦后旗| 稻城县| 巴林右旗| 太康县| 镶黄旗| 安化县| 象山县| 丹江口市| 桃江县| 隆昌县| 腾冲县| 桂阳县| 宁河县|