找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2020; 16th European Confer Andrea Vedaldi,Horst Bischof,Jan-Michael Frahm Conference proceedings 2020 Springer Natur

[復(fù)制鏈接]
樓主: Cleveland
51#
發(fā)表于 2025-3-30 12:13:42 | 只看該作者
52#
發(fā)表于 2025-3-30 13:18:51 | 只看該作者
PIoU Loss: Towards Accurate Oriented Object Detection in Complex Environments,proaches are mostly built on horizontal bounding box detectors by introducing an additional angle dimension optimized by a distance loss. However, as the distance loss only minimizes the angle error of the OBB and that it loosely correlates to the IoU, it is insensitive to objects with high aspect r
53#
發(fā)表于 2025-3-30 18:04:15 | 只看該作者
TENet: Triple Excitation Network for Video Salient Object Detection,n (VSOD) from three aspects, spatial, temporal, and online excitations. These excitation mechanisms are designed following the spirit of curriculum learning and aim to reduce learning ambiguities at the beginning of training by selectively exciting feature activations using ground truth. Then we gra
54#
發(fā)表于 2025-3-30 22:51:13 | 只看該作者
Deep Feedback Inverse Problem Solver, the forward process and learn an iterative update model. Specifically, at each iteration, the neural network takes the feedback as input and outputs an update on current estimation. Our approach does not have any restrictions on the forward process; it does not require any prior knowledge either. T
55#
發(fā)表于 2025-3-31 02:45:34 | 只看該作者
56#
發(fā)表于 2025-3-31 07:30:16 | 只看該作者
57#
發(fā)表于 2025-3-31 10:51:00 | 只看該作者
DTVNet: Dynamic Time-Lapse Video Generation via Single Still Image,ingle landscape image, which are conditioned on normalized motion vectors. The proposed DTVNet consists of two submodules: . (OFE) and . (DVG). The OFE maps a sequence of optical flow maps to a . that encodes the motion information inside the generated video. The DVG contains motion and content stre
58#
發(fā)表于 2025-3-31 15:03:33 | 只看該作者
59#
發(fā)表于 2025-3-31 20:06:12 | 只看該作者
60#
發(fā)表于 2025-4-1 00:47:01 | 只看該作者
Stream Regulation in Great Britainiative alignment for leveraging part of the base data by aligning the novel training instances to the closely related ones in the base training set. This expands the size of the effective novel training set by adding extra “related base” instances to the few novel ones, thereby allowing a constructi
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 23:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南昌县| 息烽县| 普陀区| 巴彦县| 二连浩特市| 城口县| 南陵县| 扶余县| 日喀则市| 茂名市| 宁津县| 韩城市| 尉氏县| 灵山县| 抚宁县| 浦东新区| 临高县| 上虞市| 通海县| 阿勒泰市| 东明县| 惠水县| 宝鸡市| 东港市| 图们市| 唐河县| 河南省| 柳河县| 聊城市| 行唐县| 双桥区| 珠海市| 长武县| 莲花县| 西乡县| 临沭县| 沙雅县| 广安市| 鄄城县| 中阳县| 乃东县|