找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2020; 16th European Confer Andrea Vedaldi,Horst Bischof,Jan-Michael Frahm Conference proceedings 2020 Springer Natur

[復(fù)制鏈接]
樓主: Confer
41#
發(fā)表于 2025-3-28 16:42:15 | 只看該作者
42#
發(fā)表于 2025-3-28 21:18:54 | 只看該作者
43#
發(fā)表于 2025-3-29 01:26:20 | 只看該作者
44#
發(fā)表于 2025-3-29 05:56:06 | 只看該作者
45#
發(fā)表于 2025-3-29 08:41:01 | 只看該作者
46#
發(fā)表于 2025-3-29 14:52:14 | 只看該作者
Deep Image Clustering with Category-Style Representation, propose a novel deep image clustering framework to learn a category-style latent representation in which the category information is disentangled from image style and can be directly used as the cluster assignment. To achieve this goal, mutual information maximization is applied to embed relevant i
47#
發(fā)表于 2025-3-29 17:42:25 | 只看該作者
48#
發(fā)表于 2025-3-29 22:16:18 | 只看該作者
Improving Monocular Depth Estimation by Leveraging Structural Awareness and Complementary Datasets,tructural information exploitation, which leads to inaccurate spatial layout, discontinuous surface, and ambiguous boundaries. In this paper, we tackle this problem in three aspects. First, to exploit the spatial relationship of visual features, we propose a structure-aware neural network with spati
49#
發(fā)表于 2025-3-30 01:19:23 | 只看該作者
BMBC: Bilateral Motion Estimation with Bilateral Cost Volume for Video Interpolation,se a novel deep-learning-based video interpolation algorithm based on bilateral motion estimation. First, we develop the bilateral motion network with the bilateral cost volume to estimate bilateral motions accurately. Then, we approximate bi-directional motions to predict a different kind of bilate
50#
發(fā)表于 2025-3-30 08:05:16 | 只看該作者
Hard Negative Examples are Hard, but Useful,ser together in an embedding space than representations of images from different classes. Much work on triplet losses focuses on selecting the most useful triplets of images to consider, with strategies that select dissimilar examples from the same class or similar examples from different classes. T
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 02:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
三穗县| 壶关县| 威信县| 阿克苏市| 呼伦贝尔市| 拜泉县| 台湾省| 曲靖市| 乌兰察布市| 宜川县| 临清市| 龙口市| 苏尼特右旗| 大渡口区| 藁城市| 建昌县| 青浦区| 乌鲁木齐市| 云浮市| 彭泽县| 镇巴县| 历史| 廉江市| 扎兰屯市| 石景山区| 宾川县| 望奎县| 昭通市| 河西区| 泰兴市| 八宿县| 丹凤县| 治多县| 得荣县| 油尖旺区| 平泉县| 昌乐县| 大竹县| 黄陵县| 青铜峡市| 庆云县|