找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2020; 16th European Confer Andrea Vedaldi,Horst Bischof,Jan-Michael Frahm Conference proceedings 2020 Springer Natur

[復(fù)制鏈接]
樓主: 葉子
11#
發(fā)表于 2025-3-23 09:47:43 | 只看該作者
12#
發(fā)表于 2025-3-23 14:35:05 | 只看該作者
13#
發(fā)表于 2025-3-23 18:14:42 | 只看該作者
Appearance-Preserving 3D Convolution for Video-Based Person Re-identification,tion (ReID). In this case, 3D convolution may destroy the appearance representation of person video clips, thus it is harmful to ReID. To address this problem, we propose Appearance-Preserving 3D Convolution (AP3D), which is composed of two components: an Appearance-Preserving Module (APM) and a 3D
14#
發(fā)表于 2025-3-24 00:52:45 | 只看該作者
15#
發(fā)表于 2025-3-24 04:18:46 | 只看該作者
Exploiting Deep Generative Prior for Versatile Image Restoration and Manipulation,-level image statistics, there are still gaps toward an image prior that captures rich image semantics including color, spatial coherence, textures, and high-level concepts. This work presents an effective way to exploit the image prior captured by a generative adversarial network (GAN) trained on l
16#
發(fā)表于 2025-3-24 08:51:35 | 只看該作者
Deep Spatial-Angular Regularization for Compressive Light Field Reconstruction over Coded Aperturesements that are further decoded by reconstruction algorithms. The bottleneck lies in the reconstruction algorithms, resulting in rather limited reconstruction quality. To tackle this challenge, we propose a novel learning-based framework for the reconstruction of high-quality LFs from acquisitions v
17#
發(fā)表于 2025-3-24 11:33:10 | 只看該作者
18#
發(fā)表于 2025-3-24 18:26:20 | 只看該作者
Combining Implicit Function Learning and Parametric Models for 3D Human Reconstruction,aces that are not controllable, which provides limited ability to modify the resulting model by editing its pose or shape parameters. Nevertheless, such features are essential in building flexible models for both computer graphics and computer vision. In this work, we present methodology that combin
19#
發(fā)表于 2025-3-24 20:47:39 | 只看該作者
20#
發(fā)表于 2025-3-25 02:29:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-28 08:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
唐河县| 柘荣县| 临安市| 怀远县| 哈密市| 永兴县| 河曲县| 磴口县| 哈密市| 清流县| 藁城市| 江山市| 保山市| 永安市| 鄄城县| 梁平县| 宁夏| 龙里县| 宁化县| 新田县| 万山特区| 邮箱| 池州市| 五峰| 通州市| 柳江县| 祥云县| 肃南| 五寨县| 湾仔区| 阜平县| 漠河县| 金乡县| 奎屯市| 白城市| 青阳县| 昌平区| 怀来县| 云南省| 九寨沟县| 永平县|