找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2018; 15th European Confer Vittorio Ferrari,Martial Hebert,Yair Weiss Conference proceedings 2018 Springer Nature Sw

[復(fù)制鏈接]
查看: 12710|回復(fù): 61
樓主
發(fā)表于 2025-3-21 18:33:10 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Computer Vision – ECCV 2018
副標(biāo)題15th European Confer
編輯Vittorio Ferrari,Martial Hebert,Yair Weiss
視頻videohttp://file.papertrans.cn/235/234198/234198.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Computer Vision – ECCV 2018; 15th European Confer Vittorio Ferrari,Martial Hebert,Yair Weiss Conference proceedings 2018 Springer Nature Sw
描述The sixteen-volume set comprising the LNCS volumes 11205-11220 constitutes the refereed proceedings of the 15th European Conference on Computer Vision, ECCV 2018, held in Munich, Germany, in September 2018..The 776 revised papers presented were carefully reviewed and selected from 2439 submissions. The papers are organized in topical?sections on learning for vision; computational photography; human analysis; human sensing; stereo and reconstruction; optimization;?matching and recognition; video attention; and poster sessions..
出版日期Conference proceedings 2018
關(guān)鍵詞3D; artificial intelligence; computer vision; image processing; image reconstruction; image segmentation;
版次1
doihttps://doi.org/10.1007/978-3-030-01258-8
isbn_softcover978-3-030-01257-1
isbn_ebook978-3-030-01258-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2018
The information of publication is updating

書目名稱Computer Vision – ECCV 2018影響因子(影響力)




書目名稱Computer Vision – ECCV 2018影響因子(影響力)學(xué)科排名




書目名稱Computer Vision – ECCV 2018網(wǎng)絡(luò)公開度




書目名稱Computer Vision – ECCV 2018網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Computer Vision – ECCV 2018被引頻次




書目名稱Computer Vision – ECCV 2018被引頻次學(xué)科排名




書目名稱Computer Vision – ECCV 2018年度引用




書目名稱Computer Vision – ECCV 2018年度引用學(xué)科排名




書目名稱Computer Vision – ECCV 2018讀者反饋




書目名稱Computer Vision – ECCV 2018讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:09:30 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:20:55 | 只看該作者
Cinthia Pestana Haddad,Kai Lehmann are inevitably biased to object classes of limited pairwise patterns, leading to poor generalization to rare or unseen object combinations. Therefore, we are interested in learning object-agnostic visual features for more generalizable relationship models. By “agnostic”, we mean that the feature is
地板
發(fā)表于 2025-3-22 07:47:46 | 只看該作者
5#
發(fā)表于 2025-3-22 11:56:18 | 只看該作者
6#
發(fā)表于 2025-3-22 13:27:25 | 只看該作者
Palgrave Studies in European Union Politicsthey predict if the underlying factors have changed? Interestingly, in most cases humans can predict the effects of similar collisions with different conditions such as changes in mass, friction, etc. It is postulated this is primarily because we learn to model physics with meaningful latent variabl
7#
發(fā)表于 2025-3-22 18:45:20 | 只看該作者
Introduction: A Crisis Decade for the EU,al activity analysis, deception detection, etc. We address subtle expression recognition through convolutional neural networks (CNNs) by developing multi-task learning (MTL) methods to effectively leverage a side task: facial landmark detection. Existing MTL methods follow a design pattern of shared
8#
發(fā)表于 2025-3-23 00:53:43 | 只看該作者
Introduction: A Crisis Decade for the EU, costly. By combining the advantages of 3D scanning, reasoning, and GAN-based domain adaptation techniques, we introduce a novel pipeline named SRDA to obtain large quantities of training samples with very minor effort. Our pipeline is well-suited to scenes that can be scanned, i.e. most indoor and
9#
發(fā)表于 2025-3-23 02:06:46 | 只看該作者
Alain Guggenbühl,Margareta Theelen Our key idea is to utilize the fact that predictions from different views of the same or similar objects should be consistent with each other. Such view consistency can provide effective regularization for keypoint prediction on unlabeled instances. In addition, we introduce a geometric alignment t
10#
發(fā)表于 2025-3-23 09:35:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 23:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桂阳县| 洛扎县| 黄平县| 三亚市| 台北县| 类乌齐县| 宁陕县| 盘锦市| 廊坊市| 梅河口市| 宁远县| 广东省| 柘城县| 区。| 宁武县| 双辽市| 龙岩市| 武冈市| 高雄市| 萨嘎县| 林甸县| 彰武县| 伊宁县| 涞水县| 黔南| 澄迈县| 新乐市| 南城县| 通许县| 苏尼特左旗| 绥芬河市| 乐亭县| 汉源县| 崇左市| 珲春市| 阜宁县| 黔江区| 温宿县| 兰西县| 阿尔山市| 含山县|