找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2018; 15th European Confer Vittorio Ferrari,Martial Hebert,Yair Weiss Conference proceedings 2018 Springer Nature Sw

[復(fù)制鏈接]
樓主: Inspection
41#
發(fā)表于 2025-3-28 16:58:05 | 只看該作者
Real-Time MDNet almost identical accuracy compared to MDNet. Our algorithm is evaluated in multiple popular tracking benchmark datasets including OTB2015, UAV123, and TempleColor, and outperforms the state-of-the-art real-time tracking methods consistently even without dataset-specific parameter tuning.
42#
發(fā)表于 2025-3-28 21:24:04 | 只看該作者
Real-Time Hair Rendering Using Sequential Adversarial Networksair structures of the original input data. As we only require a feed-forward pass through the network, our rendering performs in real-time. We demonstrate the synthesis of photorealistic hair images on a wide range of intricate hairstyles and compare our technique with state-of-the-art hair rendering methods.
43#
發(fā)表于 2025-3-29 01:23:43 | 只看該作者
44#
發(fā)表于 2025-3-29 05:31:27 | 只看該作者
Specular-to-Diffuse Translation for Multi-view Reconstruction large synthetic training data set using physically-based rendering. During testing, our network takes only the raw glossy images as input, without extra information such as segmentation masks or lighting estimation. Results demonstrate that multi-view reconstruction can be significantly improved using the images filtered by our network.
45#
發(fā)表于 2025-3-29 10:13:10 | 只看該作者
46#
發(fā)表于 2025-3-29 12:36:52 | 只看該作者
Single Image Highlight Removal with a Sparse and Low-Rank Reflection Modelvely by the augmented Lagrange multiplier method. Experimental results show that our method performs well on both synthetic images and many real-world examples and is competitive with previous methods, especially in some challenging scenarios featuring natural illumination, hue-saturation ambiguity and strong noises.
47#
發(fā)表于 2025-3-29 18:07:16 | 只看該作者
48#
發(fā)表于 2025-3-29 23:03:38 | 只看該作者
Progressive Structure from Motiontput and yet maintains the capabilities of existing pipelines. We demonstrate and evaluate our method on diverse challenging public and dedicated datasets including those with highly symmetric structures and compare to the state of the art.
49#
發(fā)表于 2025-3-30 03:57:58 | 只看該作者
50#
發(fā)表于 2025-3-30 06:49:08 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 23:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南漳县| 专栏| 吉木乃县| 宜宾县| 承德市| 陵水| 黑河市| 沙洋县| 靖州| 新和县| 桃园市| 康保县| 娄烦县| SHOW| 延长县| 乐昌市| 郑州市| 新建县| 绥棱县| 瑞丽市| 府谷县| 桃江县| 乐安县| 英吉沙县| 彰化市| 长宁县| 漾濞| 鄄城县| 广德县| 寻甸| 青冈县| 壤塘县| 栾川县| 宝清县| 雷山县| 建德市| 洛南县| 遂宁市| 应城市| 盐亭县| 左云县|