找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2018; 15th European Confer Vittorio Ferrari,Martial Hebert,Yair Weiss Conference proceedings 2018 Springer Nature Sw

[復制鏈接]
樓主: 馬用
41#
發(fā)表于 2025-3-28 14:44:22 | 只看該作者
42#
發(fā)表于 2025-3-28 22:11:28 | 只看該作者
Semi-convolutional Operators for Instance Segmentationhese problems to pixel labeling tasks, as the latter could be more efficient, could be integrated seamlessly in image-to-image network architectures as used in many other tasks, and could be more accurate for objects that are not well approximated by bounding boxes. In this paper we show theoretical
43#
發(fā)表于 2025-3-28 23:51:41 | 只看該作者
44#
發(fā)表于 2025-3-29 05:11:28 | 只看該作者
Fictitious GAN: Training GANs with Historical Modelse. GANs are commonly viewed as a two-player zero-sum game between two neural networks. Here, we leverage this game theoretic view to study the convergence behavior of the training process. Inspired by the fictitious play learning process, a novel training method, referred to as Fictitious GAN, is in
45#
發(fā)表于 2025-3-29 09:35:26 | 只看該作者
46#
發(fā)表于 2025-3-29 13:37:22 | 只看該作者
C-WSL: Count-Guided Weakly Supervised Localization weakly supervised localization (WSL). C-WSL uses a simple count-based region selection algorithm to select high-quality regions, each of which covers a single object instance during training, and improves existing WSL methods by training with the selected regions. To demonstrate the effectiveness o
47#
發(fā)表于 2025-3-29 17:39:38 | 只看該作者
48#
發(fā)表于 2025-3-29 20:11:13 | 只看該作者
Product Quantization Network for Fast Image Retrievale hard assignment to soft assignment, we make it feasible to incorporate the product quantization as a layer of a convolutional neural network and propose our product quantization network. Meanwhile, we come up with a novel asymmetric triplet loss, which effectively boosts the retrieval accuracy of
49#
發(fā)表于 2025-3-30 03:41:57 | 只看該作者
Cross-Modal Hamming Hashingt provide with the advantages of computation efficiency and retrieval quality for multimedia retrieval. Hamming space retrieval enables efficient constant-time search that returns data items within a given Hamming radius to each query, by hash lookups instead of linear scan. However, Hamming space r
50#
發(fā)表于 2025-3-30 04:06:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 19:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
聂拉木县| 东辽县| 沛县| 三河市| 丰原市| 芜湖市| 衡水市| 澄江县| 华蓥市| 福清市| 仁怀市| 万州区| 上杭县| 博乐市| 平安县| 海阳市| 玉环县| 平罗县| 深圳市| 华蓥市| 通渭县| 定南县| 阜康市| 无极县| 辉县市| 股票| 安义县| 宜兰市| 余姚市| 观塘区| 兰溪市| 富锦市| 大悟县| 北辰区| 太湖县| 达州市| 兴义市| 峨眉山市| 静海县| 麦盖提县| 沙坪坝区|