找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2018; 15th European Confer Vittorio Ferrari,Martial Hebert,Yair Weiss Conference proceedings 2018 Springer Nature Sw

[復制鏈接]
查看: 8993|回復: 57
樓主
發(fā)表于 2025-3-21 16:33:15 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Computer Vision – ECCV 2018
副標題15th European Confer
編輯Vittorio Ferrari,Martial Hebert,Yair Weiss
視頻videohttp://file.papertrans.cn/235/234184/234184.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Computer Vision – ECCV 2018; 15th European Confer Vittorio Ferrari,Martial Hebert,Yair Weiss Conference proceedings 2018 Springer Nature Sw
描述The sixteen-volume set comprising the LNCS volumes 11205-11220 constitutes the refereed proceedings of the 15th European Conference on Computer Vision, ECCV 2018, held in Munich, Germany, in September 2018..The 776 revised papers presented were carefully reviewed and selected from 2439 submissions. The papers are organized in topical?sections on learning for vision; computational photography; human analysis; human sensing; stereo and reconstruction; optimization;?matching and recognition; video attention; and poster sessions..
出版日期Conference proceedings 2018
關鍵詞3D; artificial intelligence; image coding; image processing; image reconstruction; image segmentation; ima
版次1
doihttps://doi.org/10.1007/978-3-030-01270-0
isbn_softcover978-3-030-01269-4
isbn_ebook978-3-030-01270-0Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2018
The information of publication is updating

書目名稱Computer Vision – ECCV 2018影響因子(影響力)




書目名稱Computer Vision – ECCV 2018影響因子(影響力)學科排名




書目名稱Computer Vision – ECCV 2018網(wǎng)絡公開度




書目名稱Computer Vision – ECCV 2018網(wǎng)絡公開度學科排名




書目名稱Computer Vision – ECCV 2018被引頻次




書目名稱Computer Vision – ECCV 2018被引頻次學科排名




書目名稱Computer Vision – ECCV 2018年度引用




書目名稱Computer Vision – ECCV 2018年度引用學科排名




書目名稱Computer Vision – ECCV 2018讀者反饋




書目名稱Computer Vision – ECCV 2018讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 23:04:23 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:08:57 | 只看該作者
Look Before You Leap: Bridging Model-Free and Model-Based Reinforcement Learning for Planned-Ahead V in synthetic environments. However, model-free DRL models do not consider the dynamics in the real-world environments, and they often fail to generalize to new scenes. In this paper, we take a radical approach to bridge the gap between synthetic studies and real-world practices—We propose a novel,
地板
發(fā)表于 2025-3-22 07:52:55 | 只看該作者
Improving Deep Visual Representation for Person Re-identification by Global and Local Image-languageverse auxiliary information has been utilized to improve the visual feature learning. In this paper, we propose to exploit natural language description as additional training supervisions for effective visual features. Compared with other auxiliary information, language can describe a specific perso
5#
發(fā)表于 2025-3-22 10:04:29 | 只看該作者
Learning 3D Shapes as Multi-layered Height-Maps Using 2D Convolutional NetworksLH) where at each grid location, we store multiple instances of height maps, thereby representing 3D shape detail that is hidden behind several layers of occlusion. We provide a novel view merging method for combining view dependent information (Eg. MLH descriptors) from multiple views. Because of t
6#
發(fā)表于 2025-3-22 14:02:20 | 只看該作者
A Geometric Perspective on Structured Light CodingHamiltonian SL coding, a novel family of SL coding schemes that can recover 3D shape with high precision, with only a small number (as few as three) of images. We establish structural similarity between popular discrete (binary) SL coding methods, and Hamiltonian coding, which is a continuous coding
7#
發(fā)表于 2025-3-22 20:14:46 | 只看該作者
8#
發(fā)表于 2025-3-22 21:44:53 | 只看該作者
9#
發(fā)表于 2025-3-23 01:52:23 | 只看該作者
Super-Resolution and Sparse View CT Reconstructionedded in 3D volumes. To reconstruct such structures at resolutions below the Nyquist limit of the CT image sensor, we devise a new 3D structure tensor prior, which can be incorporated as a regularizer into more traditional proximal optimization methods for CT reconstruction. As a second, smaller con
10#
發(fā)表于 2025-3-23 05:48:16 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-26 23:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
泗水县| 都江堰市| 全椒县| 彩票| 昭觉县| 浦城县| 瑞安市| 靖西县| 嘉黎县| 乐陵市| 乐亭县| 巴林左旗| 通州市| 繁峙县| 邢台市| 寿宁县| SHOW| 全州县| 阳信县| 青浦区| 广平县| 罗平县| 吉安市| 黄山市| 海原县| 鹤庆县| 磐安县| 得荣县| 当雄县| 东光县| 枣庄市| 都匀市| 阿拉善左旗| 英吉沙县| 咸丰县| 南宫市| 宝山区| 湄潭县| 盖州市| 宁阳县| 定陶县|