找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2016 Workshops; Amsterdam, The Nethe Gang Hua,Hervé Jégou Conference proceedings 2016 Springer International Publish

[復(fù)制鏈接]
樓主: Espionage
41#
發(fā)表于 2025-3-28 18:39:51 | 只看該作者
Road Segmentation for Classification of Road Weather Conditionsy. This is a challenging problem for uncalibrated cameras such as removable dash cams or cell phone cameras, where the location of the road in the image may vary considerably from image to image. Here we show that combining a spatial prior with vanishing point and horizon estimators can generate imp
42#
發(fā)表于 2025-3-28 20:23:42 | 只看該作者
Recognizing Text-Based Traffic Guide Panels with Cascaded Localization Network-mounted cameras from natural scene images. The proposed framework involves two contributions. First, a novel Cascaded Localization Network (CLN) joining two customized convolutional nets is proposed to detect the guide panels and the scene text on them in a coarse-to-fine manner. In this network, t
43#
發(fā)表于 2025-3-29 02:27:59 | 只看該作者
44#
發(fā)表于 2025-3-29 07:03:12 | 只看該作者
Extracting Driving Behavior: Global Metric Localization from Dashcam Videos in the Wildze these dashcam videos harvested in the wild to extract the driving behavior—global metric localization of 3D vehicle trajectories (Fig.?.). We propose a robust approach to (1) extract a relative vehicle 3D trajectory from a dashcam video, (2) create a global metric 3D map using geo-localized Googl
45#
發(fā)表于 2025-3-29 10:16:26 | 只看該作者
From On-Road to Off: Transfer Learning Within a Deep Convolutional Neural Network for Segmentation a that notably surpass prior traditional feature driven approaches. Here, we take an existing CNN architecture, pre-trained for urban road-scene understanding, and retrain it towards the task of classifying off-road scenes, assessing the network performance within the training cycle. Within the parad
46#
發(fā)表于 2025-3-29 13:49:10 | 只看該作者
47#
發(fā)表于 2025-3-29 19:35:05 | 只看該作者
Fusing Convolutional Neural Networks with a Restoration Network for Increasing Accuracy and Stabilit and instead of restoring the image directly, it generates a pattern which is added with the noisy image for restoring the clean image. Our experiments shows that the Lipschitz constant of the proposed network is less than 1 and it is able to remove very strong as well as very slight noises. This ab
48#
發(fā)表于 2025-3-29 20:47:59 | 只看該作者
Global Scale Integral Volumeslarge scale 3D datasets is challenging due to high memory requirements. The difficulties lie in efficiently computing, storing, querying and updating the integral volume values. In this work, we address the above problems and present a novel solution for processing integral volumes for large scale 3
49#
發(fā)表于 2025-3-30 02:56:10 | 只看該作者
50#
發(fā)表于 2025-3-30 05:49:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-2 03:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
江城| 甘南县| 合水县| 历史| 鲜城| 财经| 锦州市| 海城市| 滦南县| 大埔区| 西乌珠穆沁旗| 全州县| 青龙| 辛集市| 体育| 台州市| 中西区| 诸城市| 山东省| 泾源县| 怀仁县| 武宣县| 阳西县| 临泉县| 荥经县| 甘德县| 武义县| 炎陵县| 灵丘县| 永顺县| 手机| 军事| 新竹县| 望江县| 南部县| 满城县| 黑山县| 哈尔滨市| 宁南县| 五台县| 巴彦淖尔市|