找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision -- ECCV 2014; 13th European Confer David Fleet,Tomas Pajdla,Tinne Tuytelaars Conference proceedings 2014 Springer Internati

[復(fù)制鏈接]
樓主: Myelopathy
51#
發(fā)表于 2025-3-30 10:03:27 | 只看該作者
52#
發(fā)表于 2025-3-30 14:52:40 | 只看該作者
Joint Unsupervised Face Alignment and Behaviour Analysisusually trained on thousands of carefully annotated examples, is applied to track the landmark points, and then analysis is performed using mostly the shape and more rarely the facial texture. This paper challenges the above framework by showing that it is feasible to perform joint landmarks localiz
53#
發(fā)表于 2025-3-30 16:42:32 | 只看該作者
Learning a Deep Convolutional Network for Image Super-Resolutiontion images. The mapping is represented as a deep convolutional neural network (CNN) [15] that takes the low-resolution image as the input and outputs the high-resolution one. We further show that traditional sparse-coding-based SR methods can also be viewed as a deep convolutional network. But unli
54#
發(fā)表于 2025-3-30 20:46:44 | 只看該作者
Discriminative Indexing for Probabilistic Image Patch Priorssks, especially deconvolution, due to its rich expressiveness. However, its applicability is limited by the heavy computation involved in the associated optimization process. Inspired by the recent advances on using regression trees to index priors defined on a Conditional Random Field, we propose a
55#
發(fā)表于 2025-3-31 01:49:58 | 只看該作者
Modeling Video Dynamics with Deep Dynencodernamic system can model dynamic textures but have limited capacity of representing sophisticated nonlinear dynamics. Inspired by the nonlinear expression power of deep autoencoders, we propose a novel model named dynencoder which has an autoencoder at the bottom and a variant of it at the top (named
56#
發(fā)表于 2025-3-31 06:35:14 | 只看該作者
Good Image Priors for Non-blind Deconvolutionat if we have more specific training examples, .sharp images of similar scenes? Surprisingly, state-of-the-art image priors don’t seem to benefit from from context-specific training examples. Re-training generic image priors using ideal sharp example images provides minimal improvement in non-blind
57#
發(fā)表于 2025-3-31 10:53:27 | 只看該作者
Image Deconvolution Ringing Artifact Detection and Removal via PSF Frequency Analysisinto account non-invertible frequency components of the blur kernel used in the deconvolution. Efficient Gabor wavelets are produced for each non-invertible frequency and applied on the deblurred image to generate a set of filter responses that reveal existing ringing artifacts. The set of Gabor fil
58#
發(fā)表于 2025-3-31 15:19:10 | 只看該作者
59#
發(fā)表于 2025-3-31 19:32:44 | 只看該作者
https://doi.org/10.1007/978-3-319-10593-23D; activity recognition and understanding; artificial intelligence; computational photography; computer
60#
發(fā)表于 2025-3-31 22:30:24 | 只看該作者
978-3-319-10592-5Springer International Publishing Switzerland 2014
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 14:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
普陀区| 江阴市| 淮北市| 淮南市| 德兴市| 望奎县| 门头沟区| 承德市| 武清区| 闽侯县| 柳江县| 调兵山市| 吉林省| 双江| 金寨县| 邵阳县| 广饶县| 集贤县| 乐亭县| 贵州省| 闽清县| 东源县| 仙居县| 遵义县| 大庆市| 富顺县| 林口县| 莱芜市| 右玉县| 许昌市| 商都县| 郎溪县| 涟源市| 武义县| 永登县| 双桥区| 霞浦县| 马龙县| 安泽县| 泗洪县| 广昌县|