找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2012; 12th European Confer Andrew Fitzgibbon,Svetlana Lazebnik,Cordelia Schmi Conference proceedings 2012 Springer-V

[復制鏈接]
樓主: 表范圍
41#
發(fā)表于 2025-3-28 16:35:17 | 只看該作者
https://doi.org/10.1007/978-3-540-72727-9dition, we decouple image edges from motion edges using a suppression mechanism, and compensate for global camera motion by using an especially fitted registration scheme. Combined with a standard bag-of-words technique, our methods achieves state-of-the-art performance in the most recent and challenging benchmarks.
42#
發(fā)表于 2025-3-28 22:48:10 | 只看該作者
0302-9743 utes the refereed proceedings of the 12th European Conference on Computer Vision, ECCV 2012, held in Florence, Italy, in October 2012. The 408 revised papers presented were carefully reviewed and selected from 1437 submissions. The papers are organized in topical sections on geometry, 2D and 3D shap
43#
發(fā)表于 2025-3-29 02:00:34 | 只看該作者
44#
發(fā)表于 2025-3-29 04:57:09 | 只看該作者
https://doi.org/10.1007/978-1-349-01488-0rs whose output confidences on the training examples are minimally correlated. Finally, these uncorrelated classifiers are assembled using the GentleBoost algorithm. Presented experiments in various visual recognition domains demonstrate the effectiveness of the method.
45#
發(fā)表于 2025-3-29 07:26:03 | 只看該作者
46#
發(fā)表于 2025-3-29 11:32:42 | 只看該作者
47#
發(fā)表于 2025-3-29 19:24:40 | 只看該作者
48#
發(fā)表于 2025-3-29 20:03:50 | 只看該作者
The Disabled Body in Contemporary Artsifier which selects the best descriptor. Our experiments on a large dataset of colored object patches show that the proposed selection method outperforms the best single descriptor and a-priori combinations of the descriptor pool.
49#
發(fā)表于 2025-3-30 00:04:12 | 只看該作者
Shape from Angle Regularityt a local constraint. Unlike earlier literature, our approach does not make restrictive assumptions about the orientation of the planes or the camera and works for both indoor and outdoor scenes. Results are shown on challenging images which would be difficult to reconstruct for existing automatic SVR algorithms.
50#
發(fā)表于 2025-3-30 05:43:08 | 只看該作者
Minimal Correlation Classificationrs whose output confidences on the training examples are minimally correlated. Finally, these uncorrelated classifiers are assembled using the GentleBoost algorithm. Presented experiments in various visual recognition domains demonstrate the effectiveness of the method.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 20:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
加查县| 什邡市| 旬邑县| 贵港市| 屯留县| 肥乡县| 河东区| 沙湾县| 西宁市| 桃园市| 阜平县| 临颍县| 吉林市| 华容县| 太仆寺旗| 郴州市| 耒阳市| 云梦县| 小金县| 宣威市| 金阳县| 永德县| 宜川县| 南靖县| 吴忠市| 井陉县| 灵寿县| 通许县| 扬州市| 财经| 福贡县| 吴川市| 北票市| 安多县| 周宁县| 麦盖提县| 德昌县| 上虞市| 金昌市| 十堰市| 忻州市|