找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision -- ECCV 2010; 11th European Confer Kostas Daniilidis,Petros Maragos,Nikos Paragios Conference proceedings 2010 Springer-Ver

[復(fù)制鏈接]
樓主: 貧血
31#
發(fā)表于 2025-3-26 22:15:05 | 只看該作者
32#
發(fā)表于 2025-3-27 05:07:25 | 只看該作者
Doug Easterling,Howard Kunreutherrmulations. On our dataset composed of 350 artistic and 500 daily photographs, we achieve a 89.5% classification accuracy in cross-validated tests, and the assessment model assigns reasonable numerical scores based on portraits’ aesthetic quality in lighting.
33#
發(fā)表于 2025-3-27 08:10:29 | 只看該作者
The Dilemmas of Brief Psychotherapyework is able to further increase margins of binary classifiers, and consequently decrease the error bound of the aggregated classifier. On two benchmark dataset, Graz [1] and the fifteen scene category dataset [2], our experiment results significantly outperformed state-of-the-art works.
34#
發(fā)表于 2025-3-27 10:56:37 | 只看該作者
https://doi.org/10.1007/978-1-4899-3558-8ication to semi-supervised learning, which can be regarded as a particular case of weakly supervised learning, further demonstrates the pertinence of the contribution. We further discuss the relevance of weakly supervised learning for computer vision applications.
35#
發(fā)表于 2025-3-27 14:27:49 | 只看該作者
https://doi.org/10.1007/978-1-4899-3558-8, freely available for download. We experimentally demonstrate the ability of our method to improve recognition on categories with few or no target domain labels and moderate to large changes in the imaging conditions.
36#
發(fā)表于 2025-3-27 20:26:13 | 只看該作者
37#
發(fā)表于 2025-3-28 01:15:36 | 只看該作者
38#
發(fā)表于 2025-3-28 03:59:22 | 只看該作者
Max-Margin Dictionary Learning for Multiclass Image Categorizationework is able to further increase margins of binary classifiers, and consequently decrease the error bound of the aggregated classifier. On two benchmark dataset, Graz [1] and the fifteen scene category dataset [2], our experiment results significantly outperformed state-of-the-art works.
39#
發(fā)表于 2025-3-28 08:17:55 | 只看該作者
Weakly Supervised Classification of Objects in Images Using Soft Random Forestsication to semi-supervised learning, which can be regarded as a particular case of weakly supervised learning, further demonstrates the pertinence of the contribution. We further discuss the relevance of weakly supervised learning for computer vision applications.
40#
發(fā)表于 2025-3-28 11:59:35 | 只看該作者
Adapting Visual Category Models to New Domains, freely available for download. We experimentally demonstrate the ability of our method to improve recognition on categories with few or no target domain labels and moderate to large changes in the imaging conditions.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 19:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平武县| 藁城市| 通辽市| 无锡市| 沾益县| 平山县| 翁源县| 威宁| 墨脱县| 沂水县| 彭阳县| 江永县| 将乐县| 类乌齐县| 法库县| 宜川县| 南漳县| 顺平县| 新邵县| 集安市| 西林县| 新乐市| 萝北县| 公安县| 乌恰县| 尚志市| 荥阳市| 拜城县| 滦南县| 宁陵县| 刚察县| 铁岭县| 乐安县| 延津县| 西充县| 三都| 贺兰县| 思茅市| 元谋县| 怀仁县| 怀柔区|