找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision -- ECCV 2006; 9th European Confere Ale? Leonardis,Horst Bischof,Axel Pinz Conference proceedings 2006 Springer-Verlag Berli

[復(fù)制鏈接]
查看: 41056|回復(fù): 36
樓主
發(fā)表于 2025-3-21 17:33:40 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Computer Vision -- ECCV 2006
副標(biāo)題9th European Confere
編輯Ale? Leonardis,Horst Bischof,Axel Pinz
視頻videohttp://file.papertrans.cn/235/234142/234142.mp4
叢書(shū)名稱Lecture Notes in Computer Science
圖書(shū)封面Titlebook: Computer Vision -- ECCV 2006; 9th European Confere Ale? Leonardis,Horst Bischof,Axel Pinz Conference proceedings 2006 Springer-Verlag Berli
出版日期Conference proceedings 2006
關(guān)鍵詞3D reconstruction; Bayesian inference; Fuzzy; Stereo; algorithms; classification; computer vision; face rec
版次1
doihttps://doi.org/10.1007/11744023
isbn_softcover978-3-540-33832-1
isbn_ebook978-3-540-33833-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2006
The information of publication is updating

書(shū)目名稱Computer Vision -- ECCV 2006影響因子(影響力)




書(shū)目名稱Computer Vision -- ECCV 2006影響因子(影響力)學(xué)科排名




書(shū)目名稱Computer Vision -- ECCV 2006網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Computer Vision -- ECCV 2006網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Computer Vision -- ECCV 2006被引頻次




書(shū)目名稱Computer Vision -- ECCV 2006被引頻次學(xué)科排名




書(shū)目名稱Computer Vision -- ECCV 2006年度引用




書(shū)目名稱Computer Vision -- ECCV 2006年度引用學(xué)科排名




書(shū)目名稱Computer Vision -- ECCV 2006讀者反饋




書(shū)目名稱Computer Vision -- ECCV 2006讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:03:59 | 只看該作者
Weakly Supervised Learning of Part-Based Spatial Models for Visual Object Recognitionon about class membership (and not object location or configuration). This method learns both a model of local part appearance and a model of the spatial relations between those parts. In contrast, other work using such a weakly supervised learning paradigm has not considered the problem of simultan
板凳
發(fā)表于 2025-3-22 03:59:29 | 只看該作者
Hyperfeatures – Multilevel Local Coding for Visual Recognitionto local occlusions and to geometric and photometric variations, but they are not able to exploit spatial co-occurrence statistics at scales larger than their local input patches. We present a new multilevel visual representation, ‘hyperfeatures’, that is designed to remedy this. The starting point
地板
發(fā)表于 2025-3-22 05:43:15 | 只看該作者
Riemannian Manifold Learning for Nonlinear Dimensionality Reductionce. We propose an efficient algorithm called Riemannian manifold learning (RML). A Riemannian manifold can be constructed in the form of a simplicial complex, and thus its intrinsic dimension can be reliably estimated. Then the NLDR problem is solved by constructing Riemannian normal coordinates (RN
5#
發(fā)表于 2025-3-22 09:29:49 | 只看該作者
6#
發(fā)表于 2025-3-22 14:20:32 | 只看該作者
Conditional Infomax Learning: An Integrated Framework for Feature Extraction and Fusiontion structure and present a novel perspective revealing the two key factors in information utilization: class-relevance and redundancy. We derive a new information decomposition model where a novel concept called class-relevant redundancy is introduced. Subsequently a new algorithm called Condition
7#
發(fā)表于 2025-3-22 18:05:23 | 只看該作者
8#
發(fā)表于 2025-3-23 01:13:42 | 只看該作者
9#
發(fā)表于 2025-3-23 05:21:18 | 只看該作者
Riemannian Manifold Learning for Nonlinear Dimensionality Reductioncomplex, and thus its intrinsic dimension can be reliably estimated. Then the NLDR problem is solved by constructing Riemannian normal coordinates (RNC). Experimental results demonstrate that our algorithm can learn the data’s intrinsic geometric structure, yielding uniformly distributed and well organized low-dimensional embedding data.
10#
發(fā)表于 2025-3-23 05:41:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 17:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
青岛市| 佛山市| 磐安县| 桃园县| 布尔津县| 楚雄市| 独山县| 来安县| 台山市| 湘潭县| 高青县| 克什克腾旗| 新宾| 威远县| 朝阳区| 铁力市| 平利县| 昌都县| 罗源县| 家居| 九台市| 大英县| 美姑县| 鄂伦春自治旗| 榆中县| 潮州市| 平定县| 秦安县| 石河子市| 临朐县| 灯塔市| 北川| 宁乡县| 云梦县| 浦东新区| 文水县| 临江市| 囊谦县| 台东市| 遂川县| 若羌县|