找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ACCV 2022; 16th Asian Conferenc Lei Wang,Juergen Gall,Rama Chellappa Conference proceedings 2023 The Editor(s) (if applic

[復(fù)制鏈接]
樓主: 我沒有辱罵
11#
發(fā)表于 2025-3-23 10:32:21 | 只看該作者
12#
發(fā)表于 2025-3-23 14:57:31 | 只看該作者
13#
發(fā)表于 2025-3-23 21:55:56 | 只看該作者
3D-C2FT: Coarse-to-Fine Transformer for?Multi-view 3D Reconstructionn attention mechanism to explore the multi-view features and exploit their relations for reinforcing the encoding-decoding modules. This paper proposes a new model, namely 3D coarse-to-fine transformer (3D-C2FT), by introducing a novel coarse-to-fine (C2F) attention mechanism for encoding multi-view
14#
發(fā)表于 2025-3-24 00:34:22 | 只看該作者
SymmNeRF: Learning to?Explore Symmetry Prior for?Single-View View Synthesishesis. However, they still fail to recover the fine appearance details, especially in self-occluded areas. This is because a single view only provides limited information. We observe that man-made objects usually exhibit symmetric appearances, which introduce additional prior knowledge. Motivated by
15#
發(fā)表于 2025-3-24 05:14:18 | 只看該作者
Meta-Det3D: Learn to?Learn Few-Shot 3D Object Detection samples from novel classes for training. Our model has two major components: a . and a .. Given a query 3D point cloud and a few support samples, the 3D meta-detector is trained over different 3D detection tasks to learn task distributions for different object classes and dynamically adapt the 3D o
16#
發(fā)表于 2025-3-24 08:02:18 | 只看該作者
ReAGFormer: Reaggregation Transformer with?Affine Group Features for?3D Object Detectionm the raw point clouds for 3D object detection, most previous researches utilize PointNet and its variants as the feature learning backbone and have seen encouraging results. However, these methods capture point features independently without modeling the interaction between points, and simple symme
17#
發(fā)表于 2025-3-24 14:01:12 | 只看該作者
Training-Free NAS for?3D Point Cloud Processingity of existing networks are relatively fixed, which makes it difficult for them to be flexibly applied to devices with different computational constraints. Instead of manually designing the network structure for each specific device, in this paper, we propose a novel training-free neural architectu
18#
發(fā)表于 2025-3-24 18:53:14 | 只看該作者
: Optimal Oblivious RAM with?Integrityction scanned blueprint images. Qualitative and quantitative evaluations demonstrate the effectiveness of the approach, making significant boost in standard vectorization metrics over the current state-of-the-art and baseline methods. We will share our code at ..
19#
發(fā)表于 2025-3-24 21:09:22 | 只看該作者
Vectorizing Building Blueprintsction scanned blueprint images. Qualitative and quantitative evaluations demonstrate the effectiveness of the approach, making significant boost in standard vectorization metrics over the current state-of-the-art and baseline methods. We will share our code at ..
20#
發(fā)表于 2025-3-25 02:59:17 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 01:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
邢台市| 额敏县| 石楼县| 舒兰市| 遵化市| 育儿| 沙洋县| 夏河县| 三台县| 苍梧县| 石狮市| 东光县| 东莞市| 桃园县| 景德镇市| 栾川县| 霍州市| 蒲江县| 叶城县| 洮南市| 灌阳县| 城市| 逊克县| 石城县| 礼泉县| 青铜峡市| 凤阳县| 中牟县| 乌兰县| 长海县| 台山市| 云南省| 拉萨市| 桃园县| 民勤县| 读书| 瑞丽市| 望江县| 政和县| 松阳县| 弋阳县|