找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ACCV 2022; 16th Asian Conferenc Lei Wang,Juergen Gall,Rama Chellappa Conference proceedings 2023 The Editor(s) (if applic

[復(fù)制鏈接]
樓主: concord
31#
發(fā)表于 2025-3-26 22:29:44 | 只看該作者
0302-9743 art VII: generative models for computer vision; segmentation and grouping; motion and tracking; document image analysis; big data, large scale methods. .978-3-031-26312-5978-3-031-26313-2Series ISSN 0302-9743 Series E-ISSN 1611-3349
32#
發(fā)表于 2025-3-27 01:40:53 | 只看該作者
33#
發(fā)表于 2025-3-27 07:58:59 | 只看該作者
34#
發(fā)表于 2025-3-27 09:46:29 | 只看該作者
Dirk Slama,Tanja Rückert,Heiner LasiSDN, the dehazing performance can be easily finetuned with an additional dataset that can be built by simply collecting hazy images. Experimental results show that our proposed SSDN is lightweight and shows competitive dehazing performance with strong generalization capability over various data domains.
35#
發(fā)表于 2025-3-27 16:23:36 | 只看該作者
Multi-Branch Network with?Ensemble Learning for?Text Removal in?the?Wild a patch attention module to perceive text location and generate text attention features. Our method outperforms state-of-the-art approaches on both real-world and synthetic datasets, improving PSNR by 1.78 dB in the SCUT-EnsText dataset and 4.45 dB in the SCUT-Syn dataset.
36#
發(fā)表于 2025-3-27 18:04:06 | 只看該作者
Lightweight Alpha Matting Network Using Distillation-Based Channel Pruningtitative and qualitative experiments with in-depth analyses. Furthermore, we demonstrate the versatility of the proposed distillation-based channel pruning method by applying it to semantic segmentation.
37#
發(fā)表于 2025-3-27 22:57:46 | 只看該作者
Self-Supervised Dehazing Network Using Physical PriorsSDN, the dehazing performance can be easily finetuned with an additional dataset that can be built by simply collecting hazy images. Experimental results show that our proposed SSDN is lightweight and shows competitive dehazing performance with strong generalization capability over various data domains.
38#
發(fā)表于 2025-3-28 02:44:13 | 只看該作者
Conference proceedings 2023ing, and shape representation; datasets and performance analysis;.Part VI: biomedical image analysis; deep learning for computer vision; ..Part VII: generative models for computer vision; segmentation and grouping; motion and tracking; document image analysis; big data, large scale methods. .
39#
發(fā)表于 2025-3-28 09:07:21 | 只看該作者
40#
發(fā)表于 2025-3-28 13:57:14 | 只看該作者
0302-9743 China, December 2022...The total of 277 contributions included in the proceedings set was carefully reviewed and selected from 836 submissions during two rounds of reviewing and improvement. The papers focus on the following topics:..Part I: 3D computer vision; optimization methods;.Part II: applic
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 06:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
淮南市| 饶平县| 冷水江市| 容城县| 广东省| 嵊州市| 万全县| 阿克陶县| 密云县| 万全县| 莱西市| 郎溪县| 台北县| 竹溪县| 富蕴县| 日照市| 北宁市| 若羌县| 利津县| 驻马店市| 泽州县| 工布江达县| 永川市| 泽州县| 宿迁市| 拉萨市| 嘉荫县| 富川| 莲花县| 吴堡县| 莫力| 嘉义市| 台湾省| 巴林右旗| 平阳县| 阳朔县| 罗江县| 景泰县| 调兵山市| 云安县| 项城市|