找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ACCV 2018; 14th Asian Conferenc C.V. Jawahar,Hongdong Li,Konrad Schindler Conference proceedings 2019 Springer Nature Swi

[復制鏈接]
查看: 44405|回復: 66
樓主
發(fā)表于 2025-3-21 17:31:34 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Computer Vision – ACCV 2018
副標題14th Asian Conferenc
編輯C.V. Jawahar,Hongdong Li,Konrad Schindler
視頻videohttp://file.papertrans.cn/235/234121/234121.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Computer Vision – ACCV 2018; 14th Asian Conferenc C.V. Jawahar,Hongdong Li,Konrad Schindler Conference proceedings 2019 Springer Nature Swi
描述.The six volume set LNCS 11361-11366 constitutes the proceedings of the 14.th. Asian Conference on Computer Vision, ACCV 2018, held in Perth, Australia, in December 2018. The total of 274 contributions was carefully reviewed and selected from 979 submissions during two rounds of reviewing and improvement. The papers focus on motion and tracking, segmentation and grouping, image-based modeling, dep learning, object recognition object recognition, object detection and categorization, vision and language, video analysis and event recognition, face and gesture analysis, statistical methods and learning, performance evaluation, medical image analysis, document analysis, optimization methods, RGBD and depth camera processing, robotic vision, applications of computer vision..
出版日期Conference proceedings 2019
關鍵詞artificial intelligence; computer vision; estimation; face recognition; Human-Computer Interaction (HCI)
版次1
doihttps://doi.org/10.1007/978-3-030-20876-9
isbn_softcover978-3-030-20875-2
isbn_ebook978-3-030-20876-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書目名稱Computer Vision – ACCV 2018影響因子(影響力)




書目名稱Computer Vision – ACCV 2018影響因子(影響力)學科排名




書目名稱Computer Vision – ACCV 2018網絡公開度




書目名稱Computer Vision – ACCV 2018網絡公開度學科排名




書目名稱Computer Vision – ACCV 2018被引頻次




書目名稱Computer Vision – ACCV 2018被引頻次學科排名




書目名稱Computer Vision – ACCV 2018年度引用




書目名稱Computer Vision – ACCV 2018年度引用學科排名




書目名稱Computer Vision – ACCV 2018讀者反饋




書目名稱Computer Vision – ACCV 2018讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 20:29:55 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:38:05 | 只看該作者
地板
發(fā)表于 2025-3-22 06:21:50 | 只看該作者
5#
發(fā)表于 2025-3-22 09:35:51 | 只看該作者
6#
發(fā)表于 2025-3-22 16:19:50 | 只看該作者
7#
發(fā)表于 2025-3-22 20:54:34 | 只看該作者
FSNet: An Identity-Aware Generative Model for Image-Based Face Swappingmorphable models (3DMMs), and facial textures are replaced between the estimated three-dimensional (3D) geometries in two images of different individuals. However, the estimation of 3D geometries along with different lighting conditions using 3DMMs is still a difficult task. We herein represent the
8#
發(fā)表于 2025-3-22 23:26:46 | 只看該作者
9#
發(fā)表于 2025-3-23 03:45:11 | 只看該作者
ScoringNet: Learning Key Fragment for Action Quality Assessment with Ranking Loss in Skilled Sportsting effective features and predicting reasonable scores for a long skilled sport video still beset researchers. In this paper, we introduce the ScoringNet, a novel network consisting of key fragment segmentation (KFS) and score prediction (SP), to address these two problems. To get the effective fe
10#
發(fā)表于 2025-3-23 08:19:09 | 只看該作者
Style Transfer with Adversarial Learning for Cross-Dataset Person Re-identificationingle dataset but fail to generalize well on another datasets. The emerging problem mainly comes from style difference between two datasets. To address this problem, we propose a novel style transfer framework based on Generative Adversarial Networks (GAN) to generate target-style images. Specifical
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-14 08:49
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
若尔盖县| 忻城县| 西华县| 绥江县| 石棉县| 龙泉市| 长泰县| 青田县| 莱西市| 兰考县| 铁力市| 陵水| 科技| 囊谦县| 平舆县| 北川| 平顺县| 白朗县| 永定县| 大厂| 广德县| 安多县| 双江| 巫山县| 开原市| 潮州市| 东丽区| 常山县| 乐山市| 宣化县| 怀远县| 深水埗区| 海安县| 江北区| 鲜城| 原平市| 灌南县| 兴城市| 建湖县| 怀来县| 彭州市|