找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision - ACCV 2007; 8th Asian Conference Yasushi Yagi,Sing Bing Kang,Hongbin Zha Conference proceedings 2007 Springer-Verlag Berli

[復(fù)制鏈接]
樓主: 惡化
11#
發(fā)表于 2025-3-23 12:47:31 | 只看該作者
12#
發(fā)表于 2025-3-23 17:53:33 | 只看該作者
Sports Classification Using Cross-Ratio Histogramse proposed approach uses invariant nature of a cross-ratio under projective transformation to develop a robust classifier. For a given image, cross-ratios are computed for the points obtained from the intersection of lines detected using Hough transform. These cross-ratios are represented by a histo
13#
發(fā)表于 2025-3-23 20:41:45 | 只看該作者
14#
發(fā)表于 2025-3-23 23:00:32 | 只看該作者
Efficient Graph Cuts for Multiclass Interactive Image Segmentation segmentation is foreground/background segmentation based on user specified brush labellings. The problem can be formulated within the binary Markov Random Field (MRF) framework which can be solved efficiently via graph cut [1]. However, no attempt has yet been made to handle segmentation of multipl
15#
發(fā)表于 2025-3-24 04:47:23 | 只看該作者
Feature Subset Selection for Multi-class SVM Based Image Classificationselection criterion for the multi-class SVMs. By minimizing this criterion, the scale factors assigned to each feature in a kernel function are optimized to identify the important features. This minimization problem can be efficiently solved by gradient-based search techniques, even if hundreds of f
16#
發(fā)表于 2025-3-24 08:53:10 | 只看該作者
Evaluating Multi-class Multiple-Instance Learning for Image Categorization. Typical current MIL schemes rely on binary one-versus-all classification, even for inherently multi-class problems. There are a few drawbacks with binary MIL when applied to a multi-class classification problem. This paper describes Multi-class Multiple-Instance Learning (McMIL) to image categoriz
17#
發(fā)表于 2025-3-24 12:12:19 | 只看該作者
TransforMesh : A Topology-Adaptive Mesh-Based Approach to Surface Evolutionmetrization, while allowing for an accurate surface representation, suffers from the inherent problems of not being able to reliably deal with self-intersections and topology changes. As a consequence, an important number of methods choose implicit representations of surfaces, e.g. level set methods
18#
發(fā)表于 2025-3-24 17:30:28 | 只看該作者
19#
發(fā)表于 2025-3-24 19:43:47 | 只看該作者
20#
發(fā)表于 2025-3-25 01:03:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 23:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
无棣县| 夹江县| 礼泉县| 同心县| 仁寿县| 奉贤区| 商都县| 台湾省| 潼南县| 法库县| 蓝山县| 肃宁县| 江门市| 康乐县| 慈溪市| 章丘市| 乐至县| 行唐县| 鄂州市| 涪陵区| 寻甸| 德安县| 河西区| 永泰县| 原阳县| 息烽县| 阿克| 江山市| 娄底市| 晋江市| 广饶县| 光山县| 江都市| 慈溪市| 岫岩| 横山县| 昭通市| 平武县| 通江县| 达孜县| 从化市|