找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision and Image Processing; 7th International Co Deep Gupta,Kishor Bhurchandi,Sanjeev Kumar Conference proceedings 2023 The Edito

[復(fù)制鏈接]
查看: 37050|回復(fù): 62
樓主
發(fā)表于 2025-3-21 19:02:20 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Computer Vision and Image Processing
副標(biāo)題7th International Co
編輯Deep Gupta,Kishor Bhurchandi,Sanjeev Kumar
視頻videohttp://file.papertrans.cn/235/234061/234061.mp4
叢書名稱Communications in Computer and Information Science
圖書封面Titlebook: Computer Vision and Image Processing; 7th International Co Deep Gupta,Kishor Bhurchandi,Sanjeev Kumar Conference proceedings 2023 The Edito
描述.This two volume set (CCIS 1776-1777) constitutes the refereed proceedings of the 7th International Conference on Computer Vision and Image Processing, CVIP 2022, held in Nagpur, India, November 4–6, 2022..The 110 full papers and 11 short papers?were carefully reviewed and selected from 307 submissions. Out of 121 papers, 109 papers are included in this book. The topical scope of the two-volume set focuses on Medical?Image? Analysis,? Image/? Video? Processing? for? Autonomous? Vehicles,? Activity Detection/? Recognition,? Human? Computer? Interaction,? Segmentation? and? Shape Representation,? Motion? and? Tracking,? Image/? Video? Scene? Understanding,? Image/Video? Retrieval,? Remote? Sensing,? Hyperspectral? Image? Processing,? Face,? Iris,?Emotion, Sign Language and Gesture Recognition, etc..
出版日期Conference proceedings 2023
關(guān)鍵詞Computer Science; Informatics; Conference Proceedings; Research; Applications
版次1
doihttps://doi.org/10.1007/978-3-031-31417-9
isbn_softcover978-3-031-31416-2
isbn_ebook978-3-031-31417-9Series ISSN 1865-0929 Series E-ISSN 1865-0937
issn_series 1865-0929
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Computer Vision and Image Processing影響因子(影響力)




書目名稱Computer Vision and Image Processing影響因子(影響力)學(xué)科排名




書目名稱Computer Vision and Image Processing網(wǎng)絡(luò)公開(kāi)度




書目名稱Computer Vision and Image Processing網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Computer Vision and Image Processing被引頻次




書目名稱Computer Vision and Image Processing被引頻次學(xué)科排名




書目名稱Computer Vision and Image Processing年度引用




書目名稱Computer Vision and Image Processing年度引用學(xué)科排名




書目名稱Computer Vision and Image Processing讀者反饋




書目名稱Computer Vision and Image Processing讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:13:46 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:12:24 | 只看該作者
地板
發(fā)表于 2025-3-22 06:10:20 | 只看該作者
5#
發(fā)表于 2025-3-22 12:42:41 | 只看該作者
6#
發(fā)表于 2025-3-22 14:10:36 | 只看該作者
Self Similarity Matrix Based CNN Filter Pruning,ightweight models all the more imminent. Another solution is to optimize and prune regular deep learning models. In this paper, we tackle the problem of CNN model pruning with the help of Self-Similarity Matrix (SSM) computed from the 2D CNN filters. We propose two novel algorithms to rank and prune
7#
發(fā)表于 2025-3-22 17:46:44 | 只看該作者
,Class Agnostic, On-Device and?Privacy Preserving Repetition Counting of?Actions from?Videos Using Salculating the pairwise similarity between each sampled frame of the video, using the per frame features extracted by the feature extraction module and a suitable distance metric in the temporal self-similarity(TSM) calculation module. We pass this calculated TSM matrix to the count prediction modul
8#
發(fā)表于 2025-3-23 00:42:16 | 只看該作者
9#
發(fā)表于 2025-3-23 03:34:14 | 只看該作者
,Attention Residual Capsule Network for?Dermoscopy Image Classification, automated classification algorithms using deep convolutional neural network (DCNN) models have been proposed, the need for performance improvement remains. The key limitations of developing a robust DCNN model for the dermoscopic image classification are (a) sub-sampling or pooling layer in traditi
10#
發(fā)表于 2025-3-23 08:08:33 | 只看該作者
,SAMNet: Semantic Aware Multimodal Network for?Emoji Drawing Classification,ile writing on touch-responsive devices, searching for emojis to capture the true intent is cumbersome. To solve this problem, the existing solutions consider either the text or only stroke-based drawings to predict the appropriate emojis. We do not leverage the full context by considering only a si
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 18:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
靖宇县| 望江县| 清徐县| 专栏| 洪江市| 新蔡县| 乌拉特后旗| 邻水| 商水县| 农安县| 中山市| 阳东县| 娄烦县| 南平市| 太保市| 玉树县| 溧阳市| 贵州省| 扎囊县| 嘉祥县| 安塞县| 抚远县| 湖北省| 南郑县| 扎鲁特旗| 靖西县| 乌鲁木齐市| 九江市| 余江县| 湘潭市| 榆林市| 西和县| 高雄市| 牙克石市| 梁平县| 祁连县| 邯郸县| 体育| 三河市| 饶阳县| 元江|