找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision and Image Processing; 4th International Co Neeta Nain,Santosh Kumar Vipparthi,Balasubramanian Conference proceedings 2020 S

[復(fù)制鏈接]
樓主: 棕櫚等
31#
發(fā)表于 2025-3-27 00:36:09 | 只看該作者
32#
發(fā)表于 2025-3-27 05:03:39 | 只看該作者
33#
發(fā)表于 2025-3-27 08:42:26 | 只看該作者
Real-Time Driver Drowsiness Detection Using Deep Learning and Heterogeneous Computing on Embedded Synt is 650x less than that of the state of the art solution. We implemented the proposed CNN, along with a face detector CNN, on a smartphone using ARM-NEON and MALI GPU in a heterogeneous computing design. This implementation achieves a real-time performance of 60 frames-per-second.
34#
發(fā)表于 2025-3-27 09:49:54 | 只看該作者
35#
發(fā)表于 2025-3-27 13:45:43 | 只看該作者
Deep Demosaicing Using ResNet-Bottleneck Architectureters (width) of the model and hence, learned the inter-channel dependencies in a better way. The proposed network outperforms the state-of-the-art demosaicing methods on both sRGB and linear datasets.
36#
發(fā)表于 2025-3-27 20:14:44 | 只看該作者
Managing Security and Workflowson. The predictive methods discussed in this paper are tested on different data samples based on different machine learning techniques. From the different methods applied, the composite method of DT, PCA and ANN gives the optimal result.
37#
發(fā)表于 2025-3-27 22:07:55 | 只看該作者
Managing Security and Workflows CFMNN, benchmark datasets such as MNIST, Caltech-101 and CIFAR-100 are used. The experimental results show that drastic reduction in the training time is achieved for online learning of CFMNN. Moreover, compared to existing methods, the proposed CFMNN has compatible or better accuracy.
38#
發(fā)表于 2025-3-28 04:22:46 | 只看該作者
39#
發(fā)表于 2025-3-28 10:01:18 | 只看該作者
40#
發(fā)表于 2025-3-28 11:03:07 | 只看該作者
A Convolutional Fuzzy Min-Max Neural Network for Image Classification CFMNN, benchmark datasets such as MNIST, Caltech-101 and CIFAR-100 are used. The experimental results show that drastic reduction in the training time is achieved for online learning of CFMNN. Moreover, compared to existing methods, the proposed CFMNN has compatible or better accuracy.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 05:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鲁山县| 玛沁县| 白朗县| 莱西市| 淮滨县| 无棣县| 贵州省| 错那县| 景泰县| 黔东| 比如县| 泽库县| 山阳县| 措勤县| 建昌县| 元阳县| 蕉岭县| 宣汉县| 铅山县| 峨边| 嘉黎县| 崇信县| 右玉县| 定边县| 县级市| 永嘉县| 措勤县| 涟源市| 雷山县| 安国市| 奉节县| 黄梅县| 防城港市| 五原县| 洛浦县| 阿勒泰市| 翁牛特旗| 六安市| 蒙自县| 宜城市| 铜川市|