找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision Using Local Binary Patterns; Matti Pietik?inen,Abdenour Hadid,Timo Ahonen Book 2011 Springer-Verlag London Limited 2011 Co

[復(fù)制鏈接]
樓主: dejected
41#
發(fā)表于 2025-3-28 18:02:47 | 只看該作者
Sappho and the Wordsworth Probleml findings which state that facial movements can provide valuable information to face analysis, this chapter investigates the use of spatiotemporal LBP for combining facial appearance (the shape of the face) and motion (the way a person is talking and moving his/her facial features) for face, facial expression and gender recognition from videos.
42#
發(fā)表于 2025-3-28 21:06:41 | 只看該作者
Local Binary Patterns for Still Imageson problems and applications has inspired much new research on different variants. The basic LBP has also some problems that need to be addressed. Therefore, several extensions and modifications of LBP have been proposed to increase its robustness and discriminative power.
43#
發(fā)表于 2025-3-29 00:22:20 | 只看該作者
Description of Interest Regionscriptor and the LBP operator. It performed better than SIFT in image matching experiments especially for image pairs having illumination variations and about equally well in image categorization experiments.
44#
發(fā)表于 2025-3-29 04:58:22 | 只看該作者
45#
發(fā)表于 2025-3-29 10:45:36 | 只看該作者
Local Binary Patterns for Still Imagesltiscale versions are introduced. The use of complementary contrast information is also discussed. The success of LBP methods in various computer vision problems and applications has inspired much new research on different variants. The basic LBP has also some problems that need to be addressed. The
46#
發(fā)表于 2025-3-29 11:40:36 | 只看該作者
47#
發(fā)表于 2025-3-29 17:15:41 | 只看該作者
48#
發(fā)表于 2025-3-29 21:59:00 | 只看該作者
Description of Interest Regionsest region description using center-symmetric local binary patterns (CS-LBP). The CS-LBP descriptor combines the advantages of the well-known SIFT descriptor and the LBP operator. It performed better than SIFT in image matching experiments especially for image pairs having illumination variations an
49#
發(fā)表于 2025-3-30 03:24:30 | 只看該作者
50#
發(fā)表于 2025-3-30 06:26:24 | 只看該作者
Recognition and Segmentation of Dynamic Texturesent recognition results are obtained for different test databases providing state-of-the-art performance. The segmentation method extends the unsupervised segmentation method presented in Chap.?. into spatiotemporal domain. It provides very promising results with less computational complexity than m
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 23:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
娱乐| 开远市| 佳木斯市| 广南县| 苏尼特左旗| 文成县| 英超| 深泽县| 大城县| 武隆县| 农安县| 镇平县| 田东县| 军事| 浮梁县| 曲松县| 郎溪县| 白玉县| 海南省| 塘沽区| 获嘉县| 阜南县| 郓城县| 中宁县| 大足县| 策勒县| 绩溪县| 如皋市| 灵山县| 仲巴县| 佳木斯市| 翁源县| 高邑县| 靖安县| 全州县| 正蓝旗| 改则县| 稻城县| 绵竹市| 佛山市| 铅山县|