找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision Using Deep Learning; Neural Network Archi Vaibhav Verdhan Book 2021 Vaibhav Verdhan 2021 Deep Learning.Computer vision.Arti

[復(fù)制鏈接]
查看: 11621|回復(fù): 39
樓主
發(fā)表于 2025-3-21 19:40:31 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Computer Vision Using Deep Learning
副標(biāo)題Neural Network Archi
編輯Vaibhav Verdhan
視頻videohttp://file.papertrans.cn/235/234038/234038.mp4
概述Implement Deep Learning solutions on your own systems to bridge the gap between theory and practice.Examine the inner workings of the codes and libraries that make Deep Learning applications work.Crea
圖書封面Titlebook: Computer Vision Using Deep Learning; Neural Network Archi Vaibhav Verdhan Book 2021 Vaibhav Verdhan 2021 Deep Learning.Computer vision.Arti
描述.Organizations spend huge resources in developing software that can perform the way a human does. Image classification, object detection and tracking, pose estimation, facial recognition, and sentiment estimation all play a major role in solving computer vision problems.?.This book will bring into focus these and other deep learning architectures and techniques to help you create solutions using Keras and the TensorFlow library. You‘ll also review mutliple neural network architectures, including LeNet, AlexNet, VGG, Inception, R-CNN, Fast R-CNN, Faster R-CNN, Mask R-CNN, YOLO, and SqueezeNet and see how they work alongside Python code via best practices, tips, tricks, shortcuts, and pitfalls.?All code snippets will be broken down and discussed thoroughly so you can implement the same principles in your respective environments..Computer Vision Using Deep Learning. offers a comprehensive yet succinct guide that stitches DL and CV together to automate operations, reduce human intervention, increase capability, and cut the costs.?.What You‘ll Learn.Examine deep learning code and concepts to apply guiding principals to your own projects.Classify and evaluate various architectures to bet
出版日期Book 2021
關(guān)鍵詞Deep Learning; Computer vision; Artificial Intelligence; AI; Object Detection; Image Classification; Pose
版次1
doihttps://doi.org/10.1007/978-1-4842-6616-8
isbn_softcover978-1-4842-6615-1
isbn_ebook978-1-4842-6616-8
copyrightVaibhav Verdhan 2021
The information of publication is updating

書目名稱Computer Vision Using Deep Learning影響因子(影響力)




書目名稱Computer Vision Using Deep Learning影響因子(影響力)學(xué)科排名




書目名稱Computer Vision Using Deep Learning網(wǎng)絡(luò)公開度




書目名稱Computer Vision Using Deep Learning網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Computer Vision Using Deep Learning被引頻次




書目名稱Computer Vision Using Deep Learning被引頻次學(xué)科排名




書目名稱Computer Vision Using Deep Learning年度引用




書目名稱Computer Vision Using Deep Learning年度引用學(xué)科排名




書目名稱Computer Vision Using Deep Learning讀者反饋




書目名稱Computer Vision Using Deep Learning讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:14:35 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:37:37 | 只看該作者
地板
發(fā)表于 2025-3-22 06:42:21 | 只看該作者
5#
發(fā)表于 2025-3-22 12:30:01 | 只看該作者
Face Recognition and Gesture Recognition,fferent poses we make, and different expressions we have. Our mobile phones and cameras capture all of this. When we recognize a friend, we recognize the face?– its shape, eyes, facial characteristics. And quite interestingly, even if we look at the same face from a side pose, we will be able to rec
6#
發(fā)表于 2025-3-22 15:43:13 | 只看該作者
7#
發(fā)表于 2025-3-22 17:44:30 | 只看該作者
VGGNet and AlexNet Networks,g architectures. We work on a network architecture, improve it, and make it more robust, accurate, and efficient. The selection of the neural network architectures is based on the testing done of various architectures.
8#
發(fā)表于 2025-3-23 00:26:46 | 只看該作者
9#
發(fā)表于 2025-3-23 03:52:03 | 只看該作者
10#
發(fā)表于 2025-3-23 06:18:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 13:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
红原县| 兴山县| 昭通市| 宝坻区| 祁东县| 英山县| 永安市| 铁岭县| 阿拉善左旗| 银川市| 富蕴县| 宣恩县| 石屏县| 沛县| 镇宁| 黎川县| 景宁| 建水县| 神木县| 静安区| 康马县| 阳原县| 宣恩县| 上林县| 合阳县| 河西区| 松溪县| 定安县| 金昌市| 拉孜县| 清涧县| 中山市| 济源市| 贞丰县| 鹤庆县| 银川市| 宣威市| 昌宁县| 山东省| 英德市| 郎溪县|