找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Science – Theory and Applications; 11th International C Alexander S. Kulikov,Gerhard J. Woeginger Conference proceedings 2016 Spri

[復(fù)制鏈接]
樓主: 撒謊
41#
發(fā)表于 2025-3-28 15:11:25 | 只看該作者
Parameterizing Edge Modification Problems Above Lower Bounds,cking?. contains subgraphs with bounded solution size. For?., we also prove NP-hardness in case of edge-disjoint packings of?.s and?., while for . and ., NP-hardness for?. even holds for vertex-disjoint packings of?.s.
42#
發(fā)表于 2025-3-28 19:26:15 | 只看該作者
43#
發(fā)表于 2025-3-29 01:16:14 | 只看該作者
44#
發(fā)表于 2025-3-29 05:22:52 | 只看該作者
45#
發(fā)表于 2025-3-29 07:53:44 | 只看該作者
https://doi.org/10.1007/978-3-642-51024-3te complexity is polynomially related to sensitivity. Previously, it has been shown that .. In this work, we give a better upper bound of . using a recent theorem limiting the structure of function graphs. We also examine relations between these measures for functions with 1-sensitivity . and arbitrary 0-sensitivity ..
46#
發(fā)表于 2025-3-29 12:46:38 | 只看該作者
The Chemistry of Superheavy Elementsm seems intractable in general, we prove that it is decidable for Grigorchuk’s group: Engel elements are precisely those of order at most 2..Our computations were implemented using the package . within the computer algebra system ..
47#
發(fā)表于 2025-3-29 17:19:09 | 只看該作者
48#
發(fā)表于 2025-3-29 21:55:07 | 只看該作者
49#
發(fā)表于 2025-3-30 01:41:39 | 只看該作者
P. Gary Eller,Robert A. Penneman when parameterized by .. We also show that . has a polynomial kernel when parameterized by . if only edge additions are allowed, and there is no polynomial kernel unless . for all other combinations of allowed editing operations.
50#
發(fā)表于 2025-3-30 06:19:39 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 13:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东方市| 儋州市| 锦州市| 佛冈县| 璧山县| 门源| 化州市| 正镶白旗| 郓城县| 聂荣县| 洱源县| 台南市| 陆川县| 陈巴尔虎旗| 汉阴县| 西青区| 安远县| 龙胜| 台中县| 福州市| 南溪县| 阿鲁科尔沁旗| 高雄县| 吐鲁番市| 时尚| 开化县| 宁德市| 牡丹江市| 罗源县| 平山县| 古浪县| 楚雄市| 申扎县| 佛教| 六盘水市| 页游| 融水| 昭觉县| 嵩明县| 兴隆县| 新疆|