找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Science – Theory and Applications; 16th International C Rahul Santhanam,Daniil Musatov Conference proceedings 2021 Springer Nature

[復(fù)制鏈接]
樓主: Inveigle
51#
發(fā)表于 2025-3-30 10:49:02 | 只看該作者
https://doi.org/10.1007/978-3-030-79416-3approximation theory; artificial intelligence; communication; computer hardware; computer networks; compu
52#
發(fā)表于 2025-3-30 13:59:43 | 只看該作者
53#
發(fā)表于 2025-3-30 19:22:25 | 只看該作者
Hybrid Organic-Inorganic Materials, games, deciding existence of an ESS is complete for ., the second level of the polynomial time hierarchy. We show that deciding existence of an ESS of a multi-player game is closely connected to the second level of the . polynomial time hierarchy. Namely, we show that the problem is hard for a comp
54#
發(fā)表于 2025-3-30 22:19:41 | 只看該作者
55#
發(fā)表于 2025-3-31 03:24:32 | 只看該作者
https://doi.org/10.1007/b113856olynomial which we call . and . and show that they are . and . complete respectively under .-projections. The definitions of the polynomials are inspired by a combinatorial characterisation of the determinant developed by Mahajan and Vinay (SODA 1997). We extend the combinatorial object in their wor
56#
發(fā)表于 2025-3-31 06:36:47 | 只看該作者
57#
發(fā)表于 2025-3-31 10:10:44 | 只看該作者
Hybrid Organic-Inorganic Materials,n the number of distinct real roots of . is polynomially bounded in .. Assuming the conjecture with parameter ., one can show that . (i.e.?symbolic permanent requires superpolynomial-size circuit). In this paper, we propose a .-conjecture for sum-of-squares (SOS) model (equivalently, .)..For a univa
58#
發(fā)表于 2025-3-31 16:00:39 | 只看該作者
The Chemistry of Metal Alkoxides.. In addition, we show that any Boolean function with approximate rank . and discrepancy . can be computed by deterministic protocols of complexity .(.), and private coin bounded error randomized protocols of complexity .. Our deterministic upper bound in terms of approximate rank is tight up?to co
59#
發(fā)表于 2025-3-31 17:33:19 | 只看該作者
60#
發(fā)表于 2025-4-1 01:29:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 10:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南汇区| 克什克腾旗| 宝坻区| 和林格尔县| 黄龙县| 青冈县| 呼伦贝尔市| 平阳县| 邵武市| 隆化县| 六盘水市| 民丰县| 芜湖市| 屏东市| 昂仁县| 常州市| 永平县| 繁峙县| 家居| 会昌县| 海晏县| 高州市| 盐源县| 探索| 和政县| 蕉岭县| 石屏县| 赤城县| 石狮市| 青川县| 洱源县| 东莞市| 博白县| 永靖县| 昭通市| 北票市| 吉木乃县| 宁阳县| 长海县| 定日县| 桃园市|