找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Science – Theory and Applications; 16th International C Rahul Santhanam,Daniil Musatov Conference proceedings 2021 Springer Nature

[復(fù)制鏈接]
樓主: Inveigle
51#
發(fā)表于 2025-3-30 10:49:02 | 只看該作者
https://doi.org/10.1007/978-3-030-79416-3approximation theory; artificial intelligence; communication; computer hardware; computer networks; compu
52#
發(fā)表于 2025-3-30 13:59:43 | 只看該作者
53#
發(fā)表于 2025-3-30 19:22:25 | 只看該作者
Hybrid Organic-Inorganic Materials, games, deciding existence of an ESS is complete for ., the second level of the polynomial time hierarchy. We show that deciding existence of an ESS of a multi-player game is closely connected to the second level of the . polynomial time hierarchy. Namely, we show that the problem is hard for a comp
54#
發(fā)表于 2025-3-30 22:19:41 | 只看該作者
55#
發(fā)表于 2025-3-31 03:24:32 | 只看該作者
https://doi.org/10.1007/b113856olynomial which we call . and . and show that they are . and . complete respectively under .-projections. The definitions of the polynomials are inspired by a combinatorial characterisation of the determinant developed by Mahajan and Vinay (SODA 1997). We extend the combinatorial object in their wor
56#
發(fā)表于 2025-3-31 06:36:47 | 只看該作者
57#
發(fā)表于 2025-3-31 10:10:44 | 只看該作者
Hybrid Organic-Inorganic Materials,n the number of distinct real roots of . is polynomially bounded in .. Assuming the conjecture with parameter ., one can show that . (i.e.?symbolic permanent requires superpolynomial-size circuit). In this paper, we propose a .-conjecture for sum-of-squares (SOS) model (equivalently, .)..For a univa
58#
發(fā)表于 2025-3-31 16:00:39 | 只看該作者
The Chemistry of Metal Alkoxides.. In addition, we show that any Boolean function with approximate rank . and discrepancy . can be computed by deterministic protocols of complexity .(.), and private coin bounded error randomized protocols of complexity .. Our deterministic upper bound in terms of approximate rank is tight up?to co
59#
發(fā)表于 2025-3-31 17:33:19 | 只看該作者
60#
發(fā)表于 2025-4-1 01:29:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 12:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泰和县| 镇宁| 宜丰县| 衡南县| 萨嘎县| 岳池县| 来凤县| 汉阴县| 霍城县| 芷江| 潮安县| 武宣县| 三门县| 玛纳斯县| 冕宁县| 永嘉县| 鹿邑县| 惠安县| 广南县| 通河县| 西峡县| 泽库县| 大化| 南平市| 中宁县| 蓬莱市| 承德市| 广东省| 仙居县| 精河县| 安龙县| 巢湖市| 区。| 张家界市| 英德市| 阜城县| 衡东县| 马龙县| 从化市| 湖北省| 开封县|