找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Science Logic; 16th International W Julian Bradfield Conference proceedings 2002 Springer-Verlag Berlin Heidelberg 2002 AI Logic.C

[復制鏈接]
樓主: 壓榨機
21#
發(fā)表于 2025-3-25 04:17:16 | 只看該作者
,United States-Vietnam Relations 1975–7,nally we allow storage of functions. We discuss similarities and differences between our model and Moggi’s model of ground store. A significant difference is that our model does not use monadic decomposition of the function type.
22#
發(fā)表于 2025-3-25 07:57:58 | 只看該作者
On Continuous Normalizationty as modulus of continuity. The number of repetition rules is locally related to the number of β-reductions necessary to reach the normal form (as represented by the B?hm tree) and the number of applications appearing in this normal form.
23#
發(fā)表于 2025-3-25 14:29:53 | 只看該作者
Configuration Theoriesre . corresponds to product. The calculus thus obtained is shown to be sound with respect to interpretation in . [.]. Completeness is proven for a restriction of the calculus to finite sequents. As a case study we axiomatise the . memory model, and formally derive a non-trivial property of thread-memory interaction.
24#
發(fā)表于 2025-3-25 17:56:42 | 只看該作者
25#
發(fā)表于 2025-3-25 22:27:48 | 只看該作者
26#
發(fā)表于 2025-3-26 00:44:58 | 只看該作者
27#
發(fā)表于 2025-3-26 04:21:45 | 只看該作者
28#
發(fā)表于 2025-3-26 10:47:17 | 只看該作者
Limitation of liability and insurance,ntially, the result is that any formula of the μ-calculus expresses the existence of a strategy in a certain game. The idea of such a correspondence can be traced back to Büchi and McNaughton who observed a similar property of monadic second order arithmetic (see [.]).
29#
發(fā)表于 2025-3-26 13:30:24 | 只看該作者
30#
發(fā)表于 2025-3-26 19:00:46 | 只看該作者
Limitation of liability and insurance, and elimination of chain- and deletion rules depend on their inequational properties (and the idempotency of addition). It follows that these normal form theorems also hold in non-continuous semirings having enough fixed-points.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 11:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
大城县| 德清县| 丰都县| 界首市| 庆城县| 滦平县| 桦川县| 金寨县| 定远县| 峨眉山市| 利川市| 徐水县| 太仆寺旗| 枣阳市| 南昌市| 固原市| 祁连县| 柯坪县| 白河县| 寻乌县| 通榆县| 麟游县| 遵义市| 寿宁县| 新乡县| 龙井市| 永宁县| 凤山县| 阳原县| 綦江县| 调兵山市| 固阳县| 县级市| 安阳市| 军事| 社旗县| 疏附县| 怀宁县| 呈贡县| 南木林县| 海晏县|