找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Science Logic; 8th Workshop, CSL ‘9 Leszek Pacholski,Jerzy Tiuryn Conference proceedings 1995 Springer-Verlag Berlin Heidelberg 19

[復(fù)制鏈接]
樓主: DIGN
41#
發(fā)表于 2025-3-28 17:37:09 | 只看該作者
Subtyping with singleton types,pecification {.} which is met uniquely by .. Singletons integrate abbreviational definitions into a type system: the hypothesis .: {. asserts .. The addition of singleton types is a non-conservative extension of familiar subtyping theories. In our system, more terms are typable and previously typable terms have more (non-dependent) types.
42#
發(fā)表于 2025-3-28 18:49:55 | 只看該作者
,Convergence and 0–1 laws for ,, under arbitrary measures,itrary measure. We use this theorem to obtain some results about the nonexistence of .. convergence laws for particular classes of structures. We also disprove a conjecture of Tyszkiewicz [16] relating the existence of .. and MSO 0–1 laws on classes of structures with arbitrary measures.
43#
發(fā)表于 2025-3-29 00:59:45 | 只看該作者
44#
發(fā)表于 2025-3-29 05:25:36 | 只看該作者
0302-9743 cal systems. Together, these papers give a representative snapshot of the area of logical foundations of computer science.978-3-540-60017-6978-3-540-49404-1Series ISSN 0302-9743 Series E-ISSN 1611-3349
45#
發(fā)表于 2025-3-29 08:56:45 | 只看該作者
46#
發(fā)表于 2025-3-29 11:54:56 | 只看該作者
https://doi.org/10.1007/978-3-319-58341-9and over equationally presented constraint domains as special cases. We give a categorical treatment of the fix-point semantics of Kowalski and van Emden, which establishes completeness in a very general setting.
47#
發(fā)表于 2025-3-29 16:23:08 | 只看該作者
48#
發(fā)表于 2025-3-29 20:26:37 | 只看該作者
Logic programming in Tau Categories,and over equationally presented constraint domains as special cases. We give a categorical treatment of the fix-point semantics of Kowalski and van Emden, which establishes completeness in a very general setting.
49#
發(fā)表于 2025-3-30 02:35:03 | 只看該作者
50#
發(fā)表于 2025-3-30 06:12:57 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-31 06:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
光山县| 武夷山市| 阿勒泰市| 微山县| 平乐县| 宁城县| 寿光市| 河东区| 安阳市| 青海省| 仙居县| 朔州市| 临沭县| 临颍县| 金阳县| 榆树市| 汕头市| 麻栗坡县| 蕲春县| 武功县| 西乌珠穆沁旗| 盈江县| 桦甸市| 三河市| 巴林左旗| 揭阳市| 辉南县| 阿巴嘎旗| 海安县| 贺州市| 宜宾市| 沧州市| 大连市| 新邵县| 会泽县| 江达县| 理塘县| 库尔勒市| 柳州市| 永和县| 天峻县|