找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Science Logic; 8th Workshop, CSL ‘9 Leszek Pacholski,Jerzy Tiuryn Conference proceedings 1995 Springer-Verlag Berlin Heidelberg 19

[復(fù)制鏈接]
樓主: DIGN
21#
發(fā)表于 2025-3-25 05:21:55 | 只看該作者
22#
發(fā)表于 2025-3-25 09:42:13 | 只看該作者
Logics for context-free languages,th the class of those sets of strings which can be defined by sentences of the form ? ., where . is first order, . is a binary predicate symbol, and the range of the second order quantifier is restricted to the class of matchings. Several variations and extensions are discussed.
23#
發(fā)表于 2025-3-25 13:13:42 | 只看該作者
Is first order contained in an initial segment of PTIME?,ls of this signature are all in an initial segment of P is shown to be related to other intriguing open problems in complexity theory and logic, like P=P...The second part of the paper strengthens the result of Ph. Kolaitis of logical definability of unambiguous computations.
24#
發(fā)表于 2025-3-25 17:28:46 | 只看該作者
Computer Science Logic978-3-540-49404-1Series ISSN 0302-9743 Series E-ISSN 1611-3349
25#
發(fā)表于 2025-3-25 22:08:19 | 只看該作者
26#
發(fā)表于 2025-3-26 03:35:26 | 只看該作者
The Carolingian Debate over Sacred Spaceth the class of those sets of strings which can be defined by sentences of the form ? ., where . is first order, . is a binary predicate symbol, and the range of the second order quantifier is restricted to the class of matchings. Several variations and extensions are discussed.
27#
發(fā)表于 2025-3-26 06:03:57 | 只看該作者
28#
發(fā)表于 2025-3-26 12:23:18 | 只看該作者
29#
發(fā)表于 2025-3-26 14:47:49 | 只看該作者
Monadic second-order logic and linear orderings of finite structures,We consider graphs in which it is possible to specify linear orderings of the sets of vertices, in uniform ways, by MS (i.e., Monadic Second-order) formulas. We also consider classes of graphs ? such that for every L.?, L is recognizable iff it is MS-definable. Our results concern in particular dependency graphs of partially commutative words.
30#
發(fā)表于 2025-3-26 20:31:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-31 01:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
衡东县| 长葛市| 格尔木市| 嘉峪关市| 全椒县| 临城县| 平昌县| 南川市| 青冈县| 柳江县| 兴宁市| 额济纳旗| 乌兰县| 开江县| 平潭县| 马公市| 台山市| 拜泉县| 康马县| 吕梁市| 宕昌县| 乐安县| 阳高县| 伊宁县| 岳阳市| 武宣县| 彭水| 松原市| 赤峰市| 南安市| 拉萨市| 谢通门县| 长宁区| 嘉鱼县| 扎囊县| 樟树市| 沁阳市| 东方市| 浦县| 洛南县| 奉化市|