找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Science Logic; 6th Workshop, CSL‘92 E. B?rger,G. J?ger,M. M. Richter Conference proceedings 1993 Springer-Verlag Berlin Heidelberg

[復(fù)制鏈接]
樓主: Intimidate
11#
發(fā)表于 2025-3-23 11:02:54 | 只看該作者
The Costa Rican Human Development Story,g?delization there exist two lambda terms E (self-interpreter) and R (reductor), both having a normal form, such that for every (closed or open) lambda term . E?.?→. and if . has a normal form ., then R?.?→?.?.
12#
發(fā)表于 2025-3-23 17:37:37 | 只看該作者
https://doi.org/10.1007/978-94-007-3879-9lems, for example “reduction of incompletely specified automata” (in short: RISA), are NLINEAR-complete (consequently, NLINEAR ≠ DLINEAR iff RISA ? DLINEAR). That notion probably strengthens NP-completeness since we argue that propositional satisfiability is not NLINEAR-complete.
13#
發(fā)表于 2025-3-23 20:47:18 | 只看該作者
Algorithmic structuring of cut-free proofs, or tree-like LK-proofs (corresponds to the undecidability of second order unification), (2) undecidable for linear LK.-proofs (corresponds to the undecidability of semi-unification), and (3) decidable for tree-like LK.-proofs (corresponds to a decidable subproblem of semi-unification).
14#
發(fā)表于 2025-3-24 01:44:44 | 只看該作者
A self-interpreter of lambda calculus having a normal form,g?delization there exist two lambda terms E (self-interpreter) and R (reductor), both having a normal form, such that for every (closed or open) lambda term . E?.?→. and if . has a normal form ., then R?.?→?.?.
15#
發(fā)表于 2025-3-24 03:57:48 | 只看該作者
Linear time algorithms and NP-complete problems,lems, for example “reduction of incompletely specified automata” (in short: RISA), are NLINEAR-complete (consequently, NLINEAR ≠ DLINEAR iff RISA ? DLINEAR). That notion probably strengthens NP-completeness since we argue that propositional satisfiability is not NLINEAR-complete.
16#
發(fā)表于 2025-3-24 08:06:05 | 只看該作者
17#
發(fā)表于 2025-3-24 13:13:50 | 只看該作者
18#
發(fā)表于 2025-3-24 15:42:16 | 只看該作者
Recursive inseparability in linear logic, the computations and show how to extract ”finite counter models” from this structure. In that way we get a version of Trakhtenbrots theorem without going through a completeness theorem for propositional linear logic. Lastly we show that the interpolant . in propositional linear logic of a provable
19#
發(fā)表于 2025-3-24 22:40:20 | 只看該作者
20#
發(fā)表于 2025-3-24 23:34:06 | 只看該作者
A self-interpreter of lambda calculus having a normal form,combinator and using only normal forms. To this aim we introduce the notion of a canonical algebraic term rewriting system, and we show that any such system can be interpreted in the lambda calculus by the B?hm — Piperno technique in such a way that strong normalization is preserved. This allows us
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 03:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
烟台市| 余江县| 望谟县| 环江| 太仓市| 新建县| 胶南市| 华蓥市| 古蔺县| 剑河县| 昆明市| 武夷山市| 岳阳县| 潢川县| 榆社县| 罗源县| 苏尼特右旗| 乡宁县| 馆陶县| 株洲市| 静乐县| 巴南区| 昔阳县| 图木舒克市| 乡宁县| 灵石县| 满洲里市| 特克斯县| 莱阳市| 洪雅县| 镇坪县| 翁牛特旗| 紫阳县| 贵定县| 阿勒泰市| 泊头市| 濮阳县| 青铜峡市| 德州市| 本溪| 长治市|