找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Intensive Methods in Statistics; Wolfgang H?rdle,Léopold Simar Conference proceedings 1993 Springer-Verlag Berlin Heidelberg 1993

[復(fù)制鏈接]
查看: 9966|回復(fù): 49
樓主
發(fā)表于 2025-3-21 18:22:16 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Computer Intensive Methods in Statistics
編輯Wolfgang H?rdle,Léopold Simar
視頻videohttp://file.papertrans.cn/234/233600/233600.mp4
叢書(shū)名稱Statistics and Computing
圖書(shū)封面Titlebook: Computer Intensive Methods in Statistics;  Wolfgang H?rdle,Léopold Simar Conference proceedings 1993 Springer-Verlag Berlin Heidelberg 1993
出版日期Conference proceedings 1993
關(guān)鍵詞Computer; Informatik; Resampling; Statistik; computer science; statistics
版次1
doihttps://doi.org/10.1007/978-3-642-52468-4
isbn_softcover978-3-7908-0677-9
isbn_ebook978-3-642-52468-4Series ISSN 1431-8784 Series E-ISSN 2197-1706
issn_series 1431-8784
copyrightSpringer-Verlag Berlin Heidelberg 1993
The information of publication is updating

書(shū)目名稱Computer Intensive Methods in Statistics影響因子(影響力)




書(shū)目名稱Computer Intensive Methods in Statistics影響因子(影響力)學(xué)科排名




書(shū)目名稱Computer Intensive Methods in Statistics網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Computer Intensive Methods in Statistics網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Computer Intensive Methods in Statistics被引頻次




書(shū)目名稱Computer Intensive Methods in Statistics被引頻次學(xué)科排名




書(shū)目名稱Computer Intensive Methods in Statistics年度引用




書(shū)目名稱Computer Intensive Methods in Statistics年度引用學(xué)科排名




書(shū)目名稱Computer Intensive Methods in Statistics讀者反饋




書(shū)目名稱Computer Intensive Methods in Statistics讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:07:16 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:18:16 | 只看該作者
https://doi.org/10.1007/978-3-8348-9154-9f a computer program for use as a companion to the lectures. No satisfactory solution could be found from the existing commercial or public softwares. We discuss in detail some of the most salient features of the experiment and we describe the tools which the authors developed in the process.
地板
發(fā)表于 2025-3-22 06:48:05 | 只看該作者
Approximate HPD Regions for Testing Residual Autocorrelation Using Augmented Regressionspendent and explanatory variables, and requires numerical integration. The tests are evaluated through a small Monte-Carlo experiment, which indicates that the first test (easier to compute) is more powerful than the second one.
5#
發(fā)表于 2025-3-22 12:13:30 | 只看該作者
6#
發(fā)表于 2025-3-22 14:32:50 | 只看該作者
Efficient Computer Generation of Matric-Variate , Drawings with an Application to Bayesian Estimatio. The different steps of the algorithm for matric-variate . drawings and the decomposition of the (inverted-) Wishart are explained. For illustrative purposes, the posterior density of the structural parameters of a simple market model is evaluated. These structural parameters are nonlinear functions of matric-variate . variables.
7#
發(fā)表于 2025-3-22 20:40:10 | 只看該作者
,Rohrstr?mung und Druckverlust,, noise filtering and discriminant analysis. For instance, we propose a Mrf model on the spectral signatures space, a strongly unified approach to classification and noise filtering as well as a particular model of noise.
8#
發(fā)表于 2025-3-22 22:50:46 | 只看該作者
https://doi.org/10.1007/978-3-8348-9154-9estimate. Various techniques have been proposed in the past ten last years to select optimal values of this parameter. This paper presents a survey on theoretical results concerned with bandwidth selection.
9#
發(fā)表于 2025-3-23 01:32:42 | 只看該作者
,Instation?re Str?mung in Rohrleitungen,. This is achieved by resampling methods. Different bootstrap and jackknife estimates are presented. The behaviour of these estimates are investigated on artificial data and on real data. The resulting choices are confronted with those given by na?ve rules.
10#
發(fā)表于 2025-3-23 09:01:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 14:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
芜湖市| 大城县| 延庆县| 益阳市| 安国市| 涡阳县| 视频| 牟定县| 黄大仙区| 阿图什市| 天峻县| 齐河县| 和田县| 赤水市| 黄山市| 文昌市| 赣州市| 敦煌市| 商丘市| 龙里县| 呼玛县| 息烽县| 资源县| 乌鲁木齐县| 仙居县| 璧山县| 徐水县| 普兰店市| 芒康县| 房山区| 淮滨县| 长垣县| 平利县| 津南区| 昔阳县| 迭部县| 印江| 安塞县| 辽源市| 沂源县| 汶上县|