找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Algebra in Scientific Computing; 14th International W Vladimir P. Gerdt,Wolfram Koepf,Evgenii V. Vorozht Conference proceedings 20

[復(fù)制鏈接]
樓主: 不足木
51#
發(fā)表于 2025-3-30 08:28:15 | 只看該作者
52#
發(fā)表于 2025-3-30 12:43:41 | 只看該作者
Peter H. Carstensen,Otto Vinter the generic initial ideal. In contrast to genericity, quasi-stability is a characteristic independent property that can be effectively verified. We also relate Pommaret bases to some invariants associated with local cohomology, exhibit the existence of linear quotients in Pommaret bases and prove s
53#
發(fā)表于 2025-3-30 17:29:37 | 只看該作者
54#
發(fā)表于 2025-3-31 00:28:49 | 只看該作者
55#
發(fā)表于 2025-3-31 04:15:45 | 只看該作者
Murat Yilmaz,Paul Clarke,Bruno W?rany binary splitting. It follows from our analysis that the values of D-finite functions (i.e., functions described as solutions of linear differential equations with polynomial coefficients) may be computed with error bounded by 2. in time . and space O (.). The standard fast algorithm for this task,
56#
發(fā)表于 2025-3-31 06:56:32 | 只看該作者
https://doi.org/10.1007/978-3-642-32973-9complexity; holonomic functions; long integers; parallel algorithms; polynomial factorization; algorithm
57#
發(fā)表于 2025-3-31 09:11:47 | 只看該作者
978-3-642-32972-2Springer-Verlag Berlin Heidelberg 2012
58#
發(fā)表于 2025-3-31 13:49:51 | 只看該作者
https://doi.org/10.1007/978-3-319-97925-0Using tools of computer algebra we derive the conditions for the cubic Lotka–Volterra system ., . to be linearizable and to admit a first integral of the form Φ(.,.)?=?....?+?? in a neighborhood of the origin, in which case the origin is called a 2:???3 resonant center.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 16:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
布拖县| 米易县| 德州市| 山西省| 二连浩特市| 白山市| 宜良县| 九龙坡区| 南投县| 罗田县| 庆阳市| 墨玉县| 曲阳县| 乐平市| 安岳县| 柞水县| 北碚区| 龙江县| 关岭| 胶州市| 平阳县| 赣榆县| 灵丘县| 凭祥市| 建阳市| 浦江县| 留坝县| 孟津县| 牡丹江市| 浦江县| 秦安县| 荔浦县| 奉化市| 西和县| 池州市| 车险| 武汉市| 新河县| 白朗县| 新巴尔虎左旗| 邢台县|