找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Algebra in Scientific Computing; 21st International W Matthew England,Wolfram Koepf,Evgenii V. Vorozhtso Conference proceedings 20

[復(fù)制鏈接]
樓主: 和善
41#
發(fā)表于 2025-3-28 17:17:14 | 只看該作者
On Characteristic Decomposition and Quasi-characteristic Decomposition,on when the variable ordering condition is always satisfied, otherwise it degenerates to compute the quasi one. Some properties of quasi-characteristic pairs and decomposition are proved, and examples are given to illustrate the algorithm.
42#
發(fā)表于 2025-3-28 20:27:14 | 只看該作者
43#
發(fā)表于 2025-3-28 23:37:48 | 只看該作者
Symbolic Investigation of the Dynamics of a System of Two Connected Bodies Moving Along a Circular ves in the space of system parameters that determine boundaries of domains with a fixed number of equilibria of the two–body system were obtained symbolically. Depending on the parameters of the problem, the number of equilibria was found by analyzing the real roots of the algebraic equations.
44#
發(fā)表于 2025-3-29 03:50:11 | 只看該作者
Root-Finding with Implicit Deflation,nd reversion of an input polynomial. We also show another unexplored direction for substantial further progress in this long and extensively studied area. Namely we dramatically increase the local efficiency of root-finding by means of the incorporation of fast algorithms for multipoint polynomial evaluation and Fast Multipole Method.
45#
發(fā)表于 2025-3-29 11:19:29 | 只看該作者
0302-9743 eld in Moscow, Russia, in August 2019..The 28 full papers presented together with 2 invited talks were carefully reviewed and selected from 44 submissions. They deal with cutting-edge research in all major disciplines of computer algebra. The papers cover topics such as polynomial algebra, symbolic
46#
發(fā)表于 2025-3-29 13:37:36 | 只看該作者
Felix L. Schwenninger,Marcus Waurickng those of the third kind, thereby providing a conceptual basis for their exploration and exact evaluation, bypassing typical troubles of common software in calculating CEI. Detailed clarifying examples are provided.
47#
發(fā)表于 2025-3-29 16:25:49 | 只看該作者
48#
發(fā)表于 2025-3-29 19:45:36 | 只看該作者
49#
發(fā)表于 2025-3-30 00:02:29 | 只看該作者
50#
發(fā)表于 2025-3-30 05:33:17 | 只看該作者
An Arithmetic-Geometric Mean of a Third Kind!,ng those of the third kind, thereby providing a conceptual basis for their exploration and exact evaluation, bypassing typical troubles of common software in calculating CEI. Detailed clarifying examples are provided.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-16 23:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
翁牛特旗| 西林县| 濮阳县| 通榆县| 德格县| 白银市| 新和县| 安阳县| 宜良县| 横峰县| 南澳县| 瑞昌市| 成安县| 清流县| 武威市| 承德县| 大化| 泰安市| 永川市| 江孜县| 娄烦县| 金华市| 剑川县| 平乡县| 宿迁市| 叙永县| 东乡族自治县| 临漳县| 镇巴县| 青海省| 平昌县| 怀柔区| 大连市| 安新县| 兴安盟| 乌海市| 睢宁县| 湾仔区| 涞源县| 华阴市| 福泉市|