找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Algebra and Polynomials; Applications of Alge Jaime Gutierrez,Josef Schicho,Martin Weimann Book 2015 Springer International Publis

[復(fù)制鏈接]
樓主: LANK
11#
發(fā)表于 2025-3-23 10:00:50 | 只看該作者
12#
發(fā)表于 2025-3-23 16:20:19 | 只看該作者
https://doi.org/10.1007/BFb0033653Let an algebraic group be given, acting on a vector space. We consider the problem of deciding whether a given element of the vector space lies in the closure of the orbit of another given element. We?describe three methods for dealing with this problem that have appeared in the literature. We illustrate the methods by examples.
13#
發(fā)表于 2025-3-23 20:19:29 | 只看該作者
Orbit Closures of Linear Algebraic Groups,Let an algebraic group be given, acting on a vector space. We consider the problem of deciding whether a given element of the vector space lies in the closure of the orbit of another given element. We?describe three methods for dealing with this problem that have appeared in the literature. We illustrate the methods by examples.
14#
發(fā)表于 2025-3-23 22:31:36 | 只看該作者
Atmosphere system governing equations,lications in enumerative combinatorics. Topics include geometric modeling in combinatorics, Ehrhart’s method for proving that a counting function is a polynomial, the connection between polyhedral cones, rational functions and quasisymmetric functions, methods for bounding coefficients, combinatoria
15#
發(fā)表于 2025-3-24 06:25:33 | 只看該作者
16#
發(fā)表于 2025-3-24 07:41:54 | 只看該作者
17#
發(fā)表于 2025-3-24 10:53:56 | 只看該作者
18#
發(fā)表于 2025-3-24 15:43:05 | 只看該作者
19#
發(fā)表于 2025-3-24 22:07:24 | 只看該作者
20#
發(fā)表于 2025-3-25 00:16:49 | 只看該作者
Atmosphere system governing equations,th respect to a non-degenerate quadric, which gives us a notion of orthogonality. In particular we relate the reciprocal polar varieties to the “Euclidean geometry” in projective space. The Euclidean distance degree and the degree of the focal loci can be expressed in terms of the?ranks, i.e., the d
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 02:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
北碚区| 东兰县| 苍溪县| 永宁县| 综艺| 清镇市| 腾冲县| 招远市| 交口县| 剑川县| 南漳县| 瓦房店市| 本溪| 七台河市| 绿春县| 金门县| 团风县| 乌海市| 招远市| 钦州市| 科技| 调兵山市| 竹山县| 环江| 门头沟区| 阜康市| 古田县| 巩留县| 固阳县| 定远县| 高台县| 延长县| 新绛县| 勃利县| 乐安县| 荥阳市| 梁平县| 新和县| 焉耆| 台南县| 敦化市|