找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Synthetic Geometry; Jürgen Bokowski,Bernd Sturmfels Book 1989 Springer-Verlag Berlin Heidelberg 1989 Mathematica.Microsoft A

[復制鏈接]
查看: 23705|回復: 40
樓主
發(fā)表于 2025-3-21 18:14:13 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Computational Synthetic Geometry
編輯Jürgen Bokowski,Bernd Sturmfels
視頻videohttp://file.papertrans.cn/234/233164/233164.mp4
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Computational Synthetic Geometry;  Jürgen Bokowski,Bernd Sturmfels Book 1989 Springer-Verlag Berlin Heidelberg 1989 Mathematica.Microsoft A
描述Computational synthetic geometry deals with methods for realizing abstract geometric objects in concrete vector spaces. This research monograph considers a large class of problems from convexity and discrete geometry including constructing convex polytopes from simplicial complexes, vector geometries from incidence structures and hyperplane arrangements from oriented matroids. It turns out that algorithms for these constructions exist if and only if arbitrary polynomial equations are decidable with respect to the underlying field. Besides such complexity theorems a variety of symbolic algorithms are discussed, and the methods are applied to obtain new mathematical results on convex polytopes, projective configurations and the combinatorics of Grassmann varieties. Finally algebraic varieties characterizing matroids and oriented matroids are introduced providing a new basis for applying computer algebra methods in this field. The necessary background knowledge is reviewed briefly. The text is accessible to students with graduate level background in mathematics, and will serve professional geometers and computer scientists as an introduction and motivation for further research.
出版日期Book 1989
關鍵詞Mathematica; Microsoft Access; Processing; Vector space; boundary element method; complexity; computer alg
版次1
doihttps://doi.org/10.1007/BFb0089253
isbn_softcover978-3-540-50478-8
isbn_ebook978-3-540-46013-8Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer-Verlag Berlin Heidelberg 1989
The information of publication is updating

書目名稱Computational Synthetic Geometry影響因子(影響力)




書目名稱Computational Synthetic Geometry影響因子(影響力)學科排名




書目名稱Computational Synthetic Geometry網(wǎng)絡公開度




書目名稱Computational Synthetic Geometry網(wǎng)絡公開度學科排名




書目名稱Computational Synthetic Geometry被引頻次




書目名稱Computational Synthetic Geometry被引頻次學科排名




書目名稱Computational Synthetic Geometry年度引用




書目名稱Computational Synthetic Geometry年度引用學科排名




書目名稱Computational Synthetic Geometry讀者反饋




書目名稱Computational Synthetic Geometry讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 23:29:01 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:27:57 | 只看該作者
https://doi.org/10.1007/BFb0089253Mathematica; Microsoft Access; Processing; Vector space; boundary element method; complexity; computer alg
地板
發(fā)表于 2025-3-22 06:41:58 | 只看該作者
978-3-540-50478-8Springer-Verlag Berlin Heidelberg 1989
5#
發(fā)表于 2025-3-22 12:25:48 | 只看該作者
6#
發(fā)表于 2025-3-22 14:28:23 | 只看該作者
7#
發(fā)表于 2025-3-22 20:19:26 | 只看該作者
8#
發(fā)表于 2025-3-22 23:51:55 | 只看該作者
0075-8434 te level background in mathematics, and will serve professional geometers and computer scientists as an introduction and motivation for further research.978-3-540-50478-8978-3-540-46013-8Series ISSN 0075-8434 Series E-ISSN 1617-9692
9#
發(fā)表于 2025-3-23 03:34:46 | 只看該作者
10#
發(fā)表于 2025-3-23 08:36:13 | 只看該作者
Models in Action: An Eco-Cognitive Outlook on Experimental Scienceat it is not a sterile dichotomy but rather a theoretically fruitful continuum, and can help the analysis of epistemically relevant issues such as the repetition/replication of experiments and their potential failure.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 07:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
分宜县| 女性| 新竹市| 社旗县| 凤阳县| 南汇区| 肥乡县| 井陉县| 湟中县| 封开县| 莱芜市| 高安市| 琼中| 桂东县| 巴林右旗| 喀喇| 武穴市| 麦盖提县| 楚雄市| 年辖:市辖区| 沂源县| 曲水县| 陵川县| 恩平市| 天峨县| 柳州市| 仪征市| 监利县| 荥阳市| 怀来县| 长岛县| 九龙坡区| 余姚市| 淮安市| 元氏县| 迁西县| 勃利县| 綦江县| 洛扎县| 佛教| 鄂托克前旗|