找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Stochastic Programming; Models, Algorithms, Lewis Ntaimo Book 2024 Springer Nature Switzerland AG 2024 Mean-risk linear and

[復(fù)制鏈接]
樓主: injurious
21#
發(fā)表于 2025-3-25 04:28:05 | 只看該作者
Christine Behnke,Bertram Meimbresse derived in Chap. 2 and decomposition techniques from Chap. 6 to derive solution algorithms for MR-SLP for quantile and deviation risk measures. Definitions of risk measures and deterministic equivalent problem (DEP) formulations are derived in Chap. 2. The risk measures . (QDEV), . (CVaR), and . EE
22#
發(fā)表于 2025-3-25 09:43:58 | 只看該作者
Philip Michalk,Bertram Meimbresseochastic programming (SP) models derived in Chap. . and decomposition techniques from Chaps. . and . in the solution methods for MR-SLP. We study two main classical approaches, . and .. Exterior sampling or Monte Carlo methods involve taking a sample and solving an approximation problem, and getting
23#
發(fā)表于 2025-3-25 13:54:39 | 只看該作者
https://doi.org/10.1007/978-3-642-23550-4o the stochastic setting. Thus, SMIP inherits the nonconvexity properties of MIP and with its large-scale nature due to data uncertainty, SMIP is very challenging to solve. Therefore, it is not surprising that there are few practical algorithms for SMIP. This motivates the study of SMIP due to its m
24#
發(fā)表于 2025-3-25 16:33:06 | 只看該作者
25#
發(fā)表于 2025-3-25 23:22:27 | 只看該作者
26#
發(fā)表于 2025-3-26 04:08:35 | 只看該作者
Introductionth optimization problems involving data uncertainties and risk. We begin with the motivation and explain why SP has become so pervasive in operations research, science, and engineering and discuss some of its diverse set of example applications that span our everyday lives. In Sect. 1.2, we provide
27#
發(fā)表于 2025-3-26 05:22:26 | 只看該作者
Stochastic Programming Models in many decision-making problems in operations research and engineering involving risk. We introduce risk functions in Sect. 2.1 and the notion of risk measures, describing axioms that define a coherent risk measure. We consider two main classes of stochastic programming: mean-risk stochastic progr
28#
發(fā)表于 2025-3-26 12:21:15 | 只看該作者
29#
發(fā)表于 2025-3-26 15:56:49 | 只看該作者
Example Applications of Stochastic Programmingtion planning, facility location, supply chain planning, fuel treatment planning, healthcare appointment scheduling, airport time slot allocation, air traffic flow management, satellite constellation scheduling, wildfire response planning, and vaccine allocation for epidemics. These applications spa
30#
發(fā)表于 2025-3-26 17:23:21 | 只看該作者
Deterministic Large-Scale Decomposition Methods the foundation for decomposition methods for stochastic programming that followed, starting with the classical L-shaped method of Van Slyke and Wets in 1969. We begin our study with . for optimizing a convex function over a convex compact set using cutting-planes in Sect. 5.2. We then move on to .
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 04:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
江西省| 阿合奇县| 保山市| 广平县| 延庆县| 尼木县| 怀化市| 蚌埠市| 义马市| 榆社县| 民县| 天气| 怀集县| 乌拉特前旗| 乌拉特中旗| 伊吾县| 邵武市| 翼城县| 宜州市| 平山县| 溧水县| 赤壁市| 阆中市| 宁陕县| 沁源县| 慈利县| 蒙自县| 西城区| 和龙市| 高青县| 济南市| 原阳县| 桑植县| 上高县| 五原县| 疏勒县| 云龙县| 佛坪县| 都江堰市| 巴中市| 苍溪县|