找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Social Networks; Mining and Visualiza Ajith Abraham Book 2012 Springer-Verlag London 2012 Ad Hoc Network Applications and Ser

[復(fù)制鏈接]
樓主: 傳家寶
31#
發(fā)表于 2025-3-27 00:14:57 | 只看該作者
32#
發(fā)表于 2025-3-27 02:14:53 | 只看該作者
33#
發(fā)表于 2025-3-27 08:14:19 | 只看該作者
Correlation Mining for Web News Information Retrievalm of Multi-correlation Probabilistic Matrix Factorization (MPMF) is proposed to reconstruct it with joint consideration of the three correlations. Third, the result ranking and visualization are conducted to present search results. Experimental results on a news dataset collected from multiple news
34#
發(fā)表于 2025-3-27 09:26:13 | 只看該作者
35#
發(fā)表于 2025-3-27 14:31:30 | 只看該作者
Reliable Online Social Network Data Collectionvices; and for mining data collected from such social networks and applications. This chapter reviews previous research which has looked at social network data collection and user behaviour in these networks. We highlight shortcomings in the methods used in these studies and introduce our own method
36#
發(fā)表于 2025-3-27 20:24:40 | 只看該作者
Knowledge Mining from the Twitter Social Network: The Case of Barack Obamated a cluster analysis that helped collecting Barack Obama’s Twitter contents in groups. Studying the results, we perceived that these clusters could be interpreted as a mirror of his political strategy. Finally, we discuss the application of this method for other social networks.
37#
發(fā)表于 2025-3-27 23:36:00 | 只看該作者
Mining and Visualizing Research Networks Using the Artefact-Actor-Network Approachtive measures while different types are not directly comparable to each other. Further, our analysis shows that narrowness of a Research Network’s subject area can be predicted using the connectedness of semantic similarity networks. Finally, conclusions are drawn and implications for future researc
38#
發(fā)表于 2025-3-28 04:25:18 | 只看該作者
Intelligent-Based Visual Pattern Clustering for Storage Layouts in Virtual Environmentsication hint clustering produces efficiency savings of up to 30% or more over conventional non-OHGC storage solutions, whereas the non-OHGC schemes for retrieve only achieve savings about 20% over conventional storage systems.
39#
發(fā)表于 2025-3-28 08:24:23 | 只看該作者
Extraction and Analysis of Facebook Friendship Relationsesent our long-term research effort in analyzing Facebook, the largest and arguably most successful OSN today: it gathers more than 500 million users. Access to data about Facebook users and their friendship relations is restricted; thus, we acquired the necessary information directly from the front
40#
發(fā)表于 2025-3-28 13:41:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 01:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
枞阳县| 万安县| 城步| 仁布县| 曲周县| 贵港市| 酒泉市| 淮阳县| 叙永县| 菏泽市| 天津市| 会昌县| 甘泉县| 军事| 铜梁县| 卢氏县| 鄂伦春自治旗| 普格县| 柯坪县| 正安县| 宁晋县| 杨浦区| 民权县| 来宾市| 射阳县| 桂东县| 社旗县| 阳新县| 上林县| 兴和县| 呼伦贝尔市| 泰兴市| 盱眙县| 海盐县| 龙井市| 鹤峰县| 庆安县| 通州市| 焉耆| 中卫市| 交口县|