找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Social Networks; Mining and Visualiza Ajith Abraham Book 2012 Springer-Verlag London 2012 Ad Hoc Network Applications and Ser

[復(fù)制鏈接]
樓主: 傳家寶
31#
發(fā)表于 2025-3-27 00:14:57 | 只看該作者
32#
發(fā)表于 2025-3-27 02:14:53 | 只看該作者
33#
發(fā)表于 2025-3-27 08:14:19 | 只看該作者
Correlation Mining for Web News Information Retrievalm of Multi-correlation Probabilistic Matrix Factorization (MPMF) is proposed to reconstruct it with joint consideration of the three correlations. Third, the result ranking and visualization are conducted to present search results. Experimental results on a news dataset collected from multiple news
34#
發(fā)表于 2025-3-27 09:26:13 | 只看該作者
35#
發(fā)表于 2025-3-27 14:31:30 | 只看該作者
Reliable Online Social Network Data Collectionvices; and for mining data collected from such social networks and applications. This chapter reviews previous research which has looked at social network data collection and user behaviour in these networks. We highlight shortcomings in the methods used in these studies and introduce our own method
36#
發(fā)表于 2025-3-27 20:24:40 | 只看該作者
Knowledge Mining from the Twitter Social Network: The Case of Barack Obamated a cluster analysis that helped collecting Barack Obama’s Twitter contents in groups. Studying the results, we perceived that these clusters could be interpreted as a mirror of his political strategy. Finally, we discuss the application of this method for other social networks.
37#
發(fā)表于 2025-3-27 23:36:00 | 只看該作者
Mining and Visualizing Research Networks Using the Artefact-Actor-Network Approachtive measures while different types are not directly comparable to each other. Further, our analysis shows that narrowness of a Research Network’s subject area can be predicted using the connectedness of semantic similarity networks. Finally, conclusions are drawn and implications for future researc
38#
發(fā)表于 2025-3-28 04:25:18 | 只看該作者
Intelligent-Based Visual Pattern Clustering for Storage Layouts in Virtual Environmentsication hint clustering produces efficiency savings of up to 30% or more over conventional non-OHGC storage solutions, whereas the non-OHGC schemes for retrieve only achieve savings about 20% over conventional storage systems.
39#
發(fā)表于 2025-3-28 08:24:23 | 只看該作者
Extraction and Analysis of Facebook Friendship Relationsesent our long-term research effort in analyzing Facebook, the largest and arguably most successful OSN today: it gathers more than 500 million users. Access to data about Facebook users and their friendship relations is restricted; thus, we acquired the necessary information directly from the front
40#
發(fā)表于 2025-3-28 13:41:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 01:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
甘泉县| 吴堡县| 丹巴县| 孝昌县| 武夷山市| 台山市| 湘潭县| 南平市| 阿克苏市| 晋州市| 忻州市| 杭锦旗| 远安县| 平利县| 铜山县| 广安市| 苏尼特右旗| 峨眉山市| 信丰县| 隆昌县| 昌平区| 大冶市| 柯坪县| 丰城市| 博罗县| 尼木县| 恭城| 定兴县| 平舆县| 武鸣县| 礼泉县| 芷江| 道真| 泾源县| 泰兴市| 昔阳县| 依安县| 阜宁县| 瑞安市| 闵行区| 方正县|